Suppr超能文献

大肠杆菌K1的多唾液酸特异性O-乙酰基转移酶NeuO的生化特性

Biochemical characterization of the polysialic acid-specific O-acetyltransferase NeuO of Escherichia coli K1.

作者信息

Bergfeld Anne K, Claus Heike, Vogel Ulrich, Mühlenhoff Martina

机构信息

Department of Cellular Chemistry, Medical School Hannover, Carl-Neuberg-Strasse 1, Hannover, Germany.

出版信息

J Biol Chem. 2007 Jul 27;282(30):22217-27. doi: 10.1074/jbc.M703044200. Epub 2007 May 22.

Abstract

Escherichia coli K1 is a leading pathogen in neonatal sepsis and meningitis. The K1 capsule, composed of alpha2,8-linked polysialic acid, represents the major virulence factor. In some K1 strains, phase-variable O-acetylation of the capsular polysaccharide is observed, a modification that is catalyzed by the prophage-encoded O-acetyltransferase NeuO. Phase variation is mediated by changes in the number of heptanucleotide repeats within the 5'-coding region of neuO, and full-length translation is restricted to repeat numbers that are a multiple of three. To understand the biochemical basis of K1 capsule O-acetylation, NeuO encoded by alleles containing 0, 12, 24, and 36 repeats was expressed and purified to homogeneity via a C-terminal hexahistidine tag. All NeuO variants assembled into hexamers and were enzymatically active with a high substrate specificity toward polysialic acid with >14 residues. Remarkably, the catalytic efficiency (k(cat)/K(m)(donor)) increased linearly with increasing numbers of repeats, revealing a new mechanism for modulating NeuO activity. Using homology modeling, we predicted a three-dimensional structure primarily composed of a left-handed parallel beta-helix with one protruding loop. Two amino acids critical for catalytic activity were identified and corresponding alanine substitutions, H119A and W143A, resulted in a complete loss of activity without affecting the oligomerization state. Our results indicate that in NeuO typical features of an acetyltransferase of the left-handed beta-helix family are combined with a unique regulatory mechanism based on variable N-terminal protein extensions formed by tandem copies of an RLKTQDS heptad.

摘要

大肠杆菌K1是新生儿败血症和脑膜炎的主要病原体。由α2,8-连接的聚唾液酸组成的K1荚膜是主要的毒力因子。在一些K1菌株中,观察到荚膜多糖的相变异O-乙酰化,这种修饰由前噬菌体编码的O-乙酰转移酶NeuO催化。相变异由neuO 5'-编码区域内七核苷酸重复序列数量的变化介导,全长翻译仅限于三的倍数的重复数。为了解K1荚膜O-乙酰化的生化基础,通过C端六组氨酸标签表达并纯化了由含0、12、24和36个重复序列的等位基因编码的NeuO,使其达到同质状态。所有NeuO变体均组装成六聚体,对具有>14个残基的聚唾液酸具有高底物特异性的酶活性。值得注意的是,催化效率(k(cat)/K(m)(供体))随着重复序列数量的增加而线性增加,揭示了一种调节NeuO活性的新机制。通过同源建模,我们预测了一个主要由左手平行β-螺旋和一个突出环组成的三维结构。鉴定了对催化活性至关重要的两个氨基酸,相应的丙氨酸取代H119A和W143A导致活性完全丧失,而不影响寡聚化状态。我们的结果表明,在NeuO中,左手β-螺旋家族乙酰转移酶的典型特征与基于由RLKTQDS七肽串联拷贝形成的可变N端蛋白延伸的独特调节机制相结合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验