Suppr超能文献

硝酸盐转运与信号传导

Nitrate transport and signalling.

作者信息

Miller Anthony J, Fan Xiaorong, Orsel Mathilde, Smith Susan J, Wells Darren M

机构信息

Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.

出版信息

J Exp Bot. 2007;58(9):2297-306. doi: 10.1093/jxb/erm066. Epub 2007 May 22.

Abstract

Physiological measurements of nitrate (NO(3)(-)) uptake by roots have defined two systems of high and low affinity uptake. In Arabidopsis, genes encoding both of these two uptake systems have been identified. Most is known about the high affinity transport system (HATS) and its regulation and yet measurements of soil NO(3)(-) show that it is more often available in the low affinity range above 1 mM concentration. Several different regulatory mechanisms have been identified for AtNRT2.1, one of the membrane transporters encoding HATS; these include feedback regulation of expression, a second component protein requirement for membrane targeting and phosphorylation, possibly leading to degradation of the protein. These various changes in the protein may be important for a second function in sensing NO(3)(-) availability at the surface of the root. Another transporter protein, AtNRT1.1 also has a role in NO(3)(-) sensing that, like AtNRT2.1, is independent of their transport function. From the range of concentrations present in the soil it is proposed that the NO(3)(-)-inducible part of HATS functions chiefly as a sensor for root NO(3)(-) availability. Two other key NO(3)(-) transport steps for efficient nitrogen use by crops, efflux across membranes and vacuolar storage and remobilization, are discussed. Genes encoding vacuolar transporters have been isolated and these are important for manipulating storage pools in crops, but the efflux system is yet to be identified. Consideration is given to how well our molecular and physiological knowledge can be integrated as well to some key questions and opportunities for the future.

摘要

根系对硝酸盐(NO₃⁻)吸收的生理测量确定了高亲和力和低亲和力吸收的两个系统。在拟南芥中,已经鉴定出编码这两种吸收系统的基因。目前对高亲和力运输系统(HATS)及其调控了解最多,然而土壤中NO₃⁻的测量表明,它在浓度高于1 mM的低亲和力范围内更常见。已确定了AtNRT2.1(编码HATS的膜转运蛋白之一)的几种不同调控机制;这些机制包括表达的反馈调控、膜靶向和磷酸化所需的第二个组成蛋白,这可能导致该蛋白降解。蛋白质的这些各种变化对于在根表面感知NO₃⁻可用性的第二个功能可能很重要。另一种转运蛋白AtNRT1.1在NO₃⁻感知中也起作用,与AtNRT2.1一样,与其转运功能无关。从土壤中存在的浓度范围来看,HATS的NO₃⁻诱导部分主要作为根系NO₃⁻可用性的传感器。讨论了作物高效利用氮的另外两个关键NO₃⁻运输步骤,即跨膜外流以及液泡储存和再利用。已经分离出编码液泡转运蛋白的基因,这些基因对于操纵作物中的储存库很重要,但外流系统尚未确定。考虑了我们的分子和生理知识能在多大程度上整合,以及未来的一些关键问题和机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验