van Voorn George A K, Hemerik Lia, Boer Martin P, Kooi Bob W
Department of Theoretical Biology, Faculty of Earth and Life Sciences, Vrije Universiteit, de Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
Math Biosci. 2007 Oct;209(2):451-69. doi: 10.1016/j.mbs.2007.02.006. Epub 2007 Mar 1.
Species establishment in a model system in a homogeneous environment can be dependent not only on the parameter setting, but also on the initial conditions of the system. For instance, predator invasion into an established prey population can fail and lead to system collapse, an event referred to as overexploitation. This phenomenon occurs in models with bistability properties, such as strong Allee effects. The Allee effect then prevents easy re-establishment of the prey species. In this paper, we deal with the bifurcation analyses of two previously published predator-prey models with strong Allee effects. We expand the analyses to include not only local, but also global bifurcations. We show the existence of a point-to-point heteroclinic cycle in these models, and discuss numerical techniques for continuation in parameter space. The continuation of such a cycle in two-parameter space forms the boundary of a region in parameter space where the system collapses after predator invasion, i.e. where overexploitation occurs. We argue that the detection and continuation of global bifurcations in these models are of vital importance for the understanding of the model dynamics.
在均匀环境中的模型系统里,物种的建立不仅可能取决于参数设置,还可能取决于系统的初始条件。例如,捕食者侵入已建立的猎物种群可能会失败并导致系统崩溃,这一事件被称为过度捕捞。这种现象发生在具有双稳性特性的模型中,比如强阿利效应。阿利效应随后会阻碍猎物物种的轻易重新建立。在本文中,我们对之前发表的两个具有强阿利效应的捕食者 - 猎物模型进行分岔分析。我们将分析范围扩大到不仅包括局部分岔,还包括全局分岔。我们展示了这些模型中存在点对点异宿环,并讨论了参数空间中延拓的数值技术。在双参数空间中这种环的延拓形成了参数空间中一个区域的边界,在该区域捕食者侵入后系统会崩溃,即发生过度捕捞的地方。我们认为,在这些模型中检测和延拓全局分岔对于理解模型动态至关重要。