Panagou E Z, Kodogiannis V, Nychas G J-E
National Agricultural Research Foundation, Institute of Technology of Agricultural Products, Lycovrissi, GR-141 23, Greece.
Int J Food Microbiol. 2007 Jul 15;117(3):276-86. doi: 10.1016/j.ijfoodmicro.2007.03.010. Epub 2007 Apr 12.
A radial basis function (RBF) neural network was developed and evaluated against a quadratic response surface model to predict the maximum specific growth rate of the ascomycetous fungus Monascus ruber in relation to temperature (20-40 degrees C), water activity (0.937-0.970) and pH (3.5-5.0), based on the data of Panagou et al. [Panagou, E.Z., Skandamis, P.N., Nychas, G.-J.E., 2003. Modelling the combined effect of temperature, pH and aw on the growth rate of M. ruber, a heat-resistant fungus isolated from green table olives. J. Appl. Microbiol. 94, 146-156]. Both RBF network and polynomial model were compared against the experimental data using five statistical indices namely, coefficient of determination (R(2)), root mean square error (RMSE), standard error of prediction (SEP), bias (B(f)) and accuracy (A(f)) factors. Graphical plots were also used for model comparison. For training data set the RBF network predictions outperformed the classical statistical model, whereas in the case of test data set the network gave reasonably good predictions, considering its performance for unseen data. Sensitivity analysis showed that from the three environmental factors the most influential on fungal growth was temperature, followed by water activity and pH to a lesser extend. Neural networks offer an alternative and powerful technique to model microbial kinetic parameters and could thus become an additional tool in predictive mycology.
基于帕纳古等人的数据[帕纳古,E.Z.,斯坎达米斯,P.N.,尼查斯,G.-J.E.,2003年。模拟温度、pH值和水分活度对从绿橄榄中分离出的耐热真菌红曲霉菌生长速率的综合影响。《应用微生物学杂志》94,146 - 156],开发了一种径向基函数(RBF)神经网络,并与二次响应面模型进行了比较,以预测子囊菌红曲霉菌在温度(20 - 40摄氏度)、水分活度(0.937 - 0.970)和pH值(3.5 - 5.0)条件下的最大比生长速率。使用五个统计指标,即决定系数(R²)、均方根误差(RMSE)、预测标准误差(SEP)、偏差(B(f))和准确度(A(f))因子,将RBF网络和多项式模型与实验数据进行了比较。还使用了图形图进行模型比较。对于训练数据集,RBF网络的预测优于经典统计模型,而在测试数据集的情况下,考虑到其对未见过的数据的性能,该网络给出了相当不错的预测。敏感性分析表明,在这三个环境因素中,对真菌生长影响最大的是温度,其次是水分活度,pH值的影响较小。神经网络为微生物动力学参数建模提供了一种替代且强大的技术,因此可以成为预测真菌学中的一种额外工具。