Shaw Robert S, Packard Norman, Schröter Matthias, Swinney Harry L
ProtoLife, Via della Libertá 12, 30175 Venezia, Italy.
Proc Natl Acad Sci U S A. 2007 Jun 5;104(23):9580-4. doi: 10.1073/pnas.0703280104. Epub 2007 May 23.
Past work has shown that ions can pass through a membrane more readily in one direction than the other. We demonstrate here in a model and an experiment that for a mixture of small and large particles such asymmetric diffusion can arise solely from an asymmetry in the geometry of the pores of the membrane. Our deterministic simulation considers a two-dimensional gas of elastic disks of two sizes diffusing through a membrane, and our laboratory experiment examines the diffusion of glass beads of two sizes through a metal membrane. In both experiment and simulation, the membrane is permeable only to the smaller particles, and the asymmetric pores lead to an asymmetry in the diffusion rates of these particles. The presence of even a small percentage of large particles can clog a membrane, preventing passage of the small particles in one direction while permitting free flow of the small particles in the other direction. The purely geometric kinetic constraints may play a role in common biological contexts such as membrane ion channels.
过去的研究表明,离子穿过膜时,一个方向比另一个方向更容易。我们在此通过一个模型和一项实验证明,对于大小颗粒的混合物,这种不对称扩散可能仅源于膜孔几何形状的不对称。我们的确定性模拟考虑了两种大小的弹性圆盘组成的二维气体扩散通过膜,我们的实验室实验研究了两种大小的玻璃珠通过金属膜的扩散。在实验和模拟中,膜仅对较小颗粒具有渗透性,不对称的孔导致这些颗粒扩散速率的不对称。即使存在小比例的大颗粒也会堵塞膜,阻止小颗粒在一个方向上通过,而允许小颗粒在另一个方向上自由流动。这种纯粹的几何动力学约束可能在诸如膜离子通道等常见生物学环境中发挥作用。