Aho Tommi, Smolander Olli-Pekka, Niemi Jari, Yli-Harja Olli
Department of Information Technology, Institute of Signal Processing, Tampere University of Technology, Tampere, Finland.
BMC Syst Biol. 2007 May 24;1:22. doi: 10.1186/1752-0509-1-22.
There is an increasing interest to model biochemical and cell biological networks, as well as to the computational analysis of these models. The development of analysis methodologies and related software is rapid in the field. However, the number of available models is still relatively small and the model sizes remain limited. The lack of kinetic information is usually the limiting factor for the construction of detailed simulation models.
We present a computational toolbox for generating random biochemical network models which mimic real biochemical networks. The toolbox is called Random Models for Biochemical Networks. The toolbox works in the Matlab environment, and it makes it possible to generate various network structures, stoichiometries, kinetic laws for reactions, and parameters therein. The generation can be based on statistical rules and distributions, and more detailed information of real biochemical networks can be used in situations where it is known. The toolbox can be easily extended. The resulting network models can be exported in the format of Systems Biology Markup Language.
While more information is accumulating on biochemical networks, random networks can be used as an intermediate step towards their better understanding. Random networks make it possible to study the effects of various network characteristics to the overall behavior of the network. Moreover, the construction of artificial network models provides the ground truth data needed in the validation of various computational methods in the fields of parameter estimation and data analysis.
对生化和细胞生物学网络进行建模以及对这些模型进行计算分析的兴趣日益浓厚。该领域分析方法和相关软件的发展迅速。然而,可用模型的数量仍然相对较少,且模型规模仍然有限。动力学信息的缺乏通常是构建详细模拟模型的限制因素。
我们展示了一个用于生成模拟真实生化网络的随机生化网络模型的计算工具箱。该工具箱名为“生化网络随机模型”。它在Matlab环境中运行,能够生成各种网络结构、化学计量学、反应动力学定律及其参数。生成过程可以基于统计规则和分布,并且在已知真实生化网络更详细信息的情况下可以使用这些信息。该工具箱易于扩展。生成的网络模型可以以系统生物学标记语言的格式导出。
虽然关于生化网络的信息越来越多,但随机网络可作为更好理解它们的中间步骤。随机网络能够研究各种网络特征对网络整体行为的影响。此外,人工网络模型的构建为参数估计和数据分析领域中各种计算方法的验证提供了所需的基础真实数据。