Suppr超能文献

一种生成调控网络标准化定性动力学系统的方法。

A method for the generation of standardized qualitative dynamical systems of regulatory networks.

作者信息

Mendoza Luis, Xenarios Ioannis

机构信息

Serono Pharmaceutical Research Institute, 14, Chemin des Aulx, 1228 Plan-les-Ouates, Geneva, Switzerland.

出版信息

Theor Biol Med Model. 2006 Mar 16;3:13. doi: 10.1186/1742-4682-3-13.

Abstract

BACKGROUND

Modeling of molecular networks is necessary to understand their dynamical properties. While a wealth of information on molecular connectivity is available, there are still relatively few data regarding the precise stoichiometry and kinetics of the biochemical reactions underlying most molecular networks. This imbalance has limited the development of dynamical models of biological networks to a small number of well-characterized systems. To overcome this problem, we wanted to develop a methodology that would systematically create dynamical models of regulatory networks where the flow of information is known but the biochemical reactions are not. There are already diverse methodologies for modeling regulatory networks, but we aimed to create a method that could be completely standardized, i.e. independent of the network under study, so as to use it systematically.

RESULTS

We developed a set of equations that can be used to translate the graph of any regulatory network into a continuous dynamical system. Furthermore, it is also possible to locate its stable steady states. The method is based on the construction of two dynamical systems for a given network, one discrete and one continuous. The stable steady states of the discrete system can be found analytically, so they are used to locate the stable steady states of the continuous system numerically. To provide an example of the applicability of the method, we used it to model the regulatory network controlling T helper cell differentiation.

CONCLUSION

The proposed equations have a form that permit any regulatory network to be translated into a continuous dynamical system, and also find its steady stable states. We showed that by applying the method to the T helper regulatory network it is possible to find its known states of activation, which correspond the molecular profiles observed in the precursor and effector cell types.

摘要

背景

对分子网络进行建模对于理解其动力学特性至关重要。尽管有大量关于分子连接性的信息,但关于大多数分子网络背后生化反应的精确化学计量和动力学的数据仍然相对较少。这种不平衡限制了生物网络动力学模型的发展,使其仅适用于少数特征明确的系统。为了克服这个问题,我们希望开发一种方法,能够系统地创建调节网络的动力学模型,其中信息流动已知,但生化反应未知。目前已经有多种用于调节网络建模的方法,但我们旨在创建一种可以完全标准化的方法,即独立于所研究的网络,以便系统地使用它。

结果

我们开发了一组方程,可用于将任何调节网络的图形转换为连续动力学系统。此外,还可以找到其稳定稳态。该方法基于为给定网络构建两个动力学系统,一个离散系统和一个连续系统。离散系统的稳定稳态可以通过解析方法找到,因此用于通过数值方法确定连续系统的稳定稳态。为了举例说明该方法的适用性,我们用它对控制辅助性T细胞分化的调节网络进行建模。

结论

所提出的方程具有允许将任何调节网络转换为连续动力学系统并找到其稳定稳态的形式。我们表明,通过将该方法应用于辅助性T细胞调节网络,可以找到其已知的激活状态,这些状态对应于在前体细胞类型和效应细胞类型中观察到的分子特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a136/1440308/014121acb6a5/1742-4682-3-13-1.jpg

相似文献

1
A method for the generation of standardized qualitative dynamical systems of regulatory networks.
Theor Biol Med Model. 2006 Mar 16;3:13. doi: 10.1186/1742-4682-3-13.
2
A network model for the control of the differentiation process in Th cells.
Biosystems. 2006 May;84(2):101-14. doi: 10.1016/j.biosystems.2005.10.004. Epub 2005 Dec 28.
3
Dynamic simulation of regulatory networks using SQUAD.
BMC Bioinformatics. 2007 Nov 26;8:462. doi: 10.1186/1471-2105-8-462.
4
The regulatory network that controls the differentiation of T lymphocytes.
Biosystems. 2013 Aug;113(2):96-103. doi: 10.1016/j.biosystems.2013.05.007. Epub 2013 Jun 4.
5
Analyzing steady states of dynamics of bio-molecules from the structure of regulatory networks.
J Theor Biol. 2010 Sep 21;266(2):323-35. doi: 10.1016/j.jtbi.2010.06.007. Epub 2010 Jun 8.
6
Analysis of discrete bioregulatory networks using symbolic steady states.
Bull Math Biol. 2011 Apr;73(4):873-98. doi: 10.1007/s11538-010-9609-1. Epub 2010 Dec 18.
7
Dynamical modeling and analysis of large cellular regulatory networks.
Chaos. 2013 Jun;23(2):025114. doi: 10.1063/1.4809783.
8
From minimal signed circuits to the dynamics of Boolean regulatory networks.
Bioinformatics. 2008 Aug 15;24(16):i220-6. doi: 10.1093/bioinformatics/btn287.
9
Reduction of Boolean network models.
J Theor Biol. 2011 Nov 21;289:167-72. doi: 10.1016/j.jtbi.2011.08.042. Epub 2011 Sep 5.
10
RMBNToolbox: random models for biochemical networks.
BMC Syst Biol. 2007 May 24;1:22. doi: 10.1186/1752-0509-1-22.

引用本文的文献

1
Synergistic effects of complex drug combinations in colorectal cancer cells predicted by logical modelling.
Front Syst Biol. 2023 Feb 27;3:1112831. doi: 10.3389/fsysb.2023.1112831. eCollection 2023.
2
Fine tuning a logical model of cancer cells to predict drug synergies: combining manual curation and automated parameterization.
Front Syst Biol. 2023 Nov 20;3:1252961. doi: 10.3389/fsysb.2023.1252961. eCollection 2023.
3
Modeling uncertainty: the impact of noise in T cell differentiation.
Front Syst Biol. 2024 Aug 6;4:1412931. doi: 10.3389/fsysb.2024.1412931. eCollection 2024.
5
Nucleus pulposus cell network modelling in the intervertebral disc.
NPJ Syst Biol Appl. 2025 Jan 31;11(1):13. doi: 10.1038/s41540-024-00479-6.
7
LM-Merger: A workflow for merging logical models with an application to gene regulation.
bioRxiv. 2024 Dec 17:2024.09.13.612961. doi: 10.1101/2024.09.13.612961.
10
DataXflow: Synergizing data-driven modeling with best parameter fit and optimal control - An efficient data analysis for cancer research.
Comput Struct Biotechnol J. 2024 Apr 8;23:1755-1772. doi: 10.1016/j.csbj.2024.04.010. eCollection 2024 Dec.

本文引用的文献

1
A network model for the control of the differentiation process in Th cells.
Biosystems. 2006 May;84(2):101-14. doi: 10.1016/j.biosystems.2005.10.004. Epub 2005 Dec 28.
2
An analytical study of the number of steady states in gene regulatory networks.
J Theor Biol. 2005 Oct 7;236(3):291-310. doi: 10.1016/j.jtbi.2005.03.015.
3
Causal protein-signaling networks derived from multiparameter single-cell data.
Science. 2005 Apr 22;308(5721):523-9. doi: 10.1126/science.1105809.
4
Modeling of signal-response cascades using decision tree analysis.
Bioinformatics. 2005 May 1;21(9):2027-35. doi: 10.1093/bioinformatics/bti278.
5
Automatic generation of cellular reaction networks with Moleculizer 1.0.
Nat Biotechnol. 2005 Jan;23(1):131-6. doi: 10.1038/nbt1054.
6
Generation and regulation of human Th1-biased immune responses in vivo: a critical role for IL-4 and IL-10.
J Immunol. 2004 May 15;172(10):6427-34. doi: 10.4049/jimmunol.172.10.6427.
7
Reconstruction of microbial transcriptional regulatory networks.
Curr Opin Biotechnol. 2004 Feb;15(1):70-7. doi: 10.1016/j.copbio.2003.11.002.
8
T cell receptor signaling: beyond complex complexes.
J Biol Chem. 2004 Jul 9;279(28):28827-30. doi: 10.1074/jbc.R400012200. Epub 2004 Apr 14.
9
Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module.
J Theor Biol. 2003 Oct 21;224(4):517-37. doi: 10.1016/s0022-5193(03)00201-7.
10
The function role of GATA-3 in Th1 and Th2 differentiation.
Immunol Res. 2003;28(1):25-37. doi: 10.1385/IR:28:1:25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验