Suppr超能文献

果蝇耳朵中换能器门控的机械信号特征

Mechanical signatures of transducer gating in the Drosophila ear.

作者信息

Albert Jörg T, Nadrowski Björn, Göpfert Martin C

机构信息

Volkswagen Foundation Research Group, Institute of Zoology, University of Cologne, Weyertal 119, D-50923 Cologne, Germany.

出版信息

Curr Biol. 2007 Jun 5;17(11):1000-6. doi: 10.1016/j.cub.2007.05.004. Epub 2007 May 24.

Abstract

Hearing relies on dedicated mechanotransducer channels that convert sound-induced vibrations into electrical signals [1]. Linking this transduction to identified proteins has proven difficult because of the scarcity of native auditory transducers and their tight functional integration into ears [2-4]. We describe an in vivo paradigm for the noninvasive study of auditory transduction. By investigating displacement responses of the Drosophila sound receiver, we identify mechanical signatures that are consistent with a direct mechanotransducer gating in the fly's ear. These signatures include a nonlinear compliance that correlates with electrical nerve responses, shifts with adaptation, and conforms to the gating-spring model of vertebrate auditory transduction. Analyzing this gating compliance in terms of the gating-spring model reveals striking parallels between the transducer mechanisms for hearing in vertebrates and flies. Our findings provide first insights into the mechanical workings of invertebrate mechanotransducer channels and set the stage for using Drosophila to specifically search for, and probe the roles of, auditory transducer components.

摘要

听力依赖于专门的机械转导通道,这些通道将声音引起的振动转化为电信号[1]。由于天然听觉转导器稀缺且它们紧密地功能性整合到耳朵中,将这种转导与已鉴定的蛋白质联系起来已被证明很困难[2 - 4]。我们描述了一种用于听觉转导非侵入性研究的体内范式。通过研究果蝇声音接收器的位移反应,我们确定了与果蝇耳朵中直接机械转导器门控一致的机械特征。这些特征包括与电神经反应相关的非线性顺应性,随适应而变化,并符合脊椎动物听觉转导的门控弹簧模型。根据门控弹簧模型分析这种门控顺应性揭示了脊椎动物和果蝇听力转导机制之间惊人的相似之处。我们的发现首次深入了解了无脊椎动物机械转导通道的机械运作,并为利用果蝇专门寻找和探究听觉转导器组件的作用奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验