Suppr超能文献

新鲜冷冻及福尔马林固定、石蜡包埋组织中微阵列与定量逆转录聚合酶链反应在乳腺癌分类上的一致性

Agreement in breast cancer classification between microarray and quantitative reverse transcription PCR from fresh-frozen and formalin-fixed, paraffin-embedded tissues.

作者信息

Mullins Michael, Perreard Laurent, Quackenbush John F, Gauthier Nicholas, Bayer Steven, Ellis Matthew, Parker Joel, Perou Charles M, Szabo Aniko, Bernard Philip S

机构信息

Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, USA.

出版信息

Clin Chem. 2007 Jul;53(7):1273-9. doi: 10.1373/clinchem.2006.083725. Epub 2007 May 24.

Abstract

BACKGROUND

Microarray studies have identified different molecular subtypes of breast cancer with prognostic significance. To transition these classifications into the clinical laboratory, we have developed a real-time quantitative reverse transcription (qRT)-PCR assay to diagnose the biological subtypes of breast cancer from fresh-frozen (FF) and formalin-fixed, paraffin-embedded (FFPE) tissues.

METHODS

We used microarray data from 124 breast samples as a training set for classifying tumors into 4 previously defined molecular subtypes: Luminal, HER2(+)/ER(-), basal-like, and normal-like. We used the training set data in 2 different centroid-based algorithms to predict sample class on 35 breast tumors (test set) procured as FF and FFPE tissues (70 samples). We classified samples on the basis of large and minimized gene sets. We used the minimized gene set in a real-time qRT-PCR assay to predict sample subtype from the FF and FFPE tissues. We evaluated primer set performance between procurement methods by use of several measures of agreement.

RESULTS

The centroid-based algorithms were in complete agreement in classification from FFPE tissues by use of qRT-PCR and the minimized "intrinsic" gene set (40 classifiers). There was 94% (33 of 35) concordance between the diagnostic algorithms when comparing subtype classification from FF tissue by use of microarray (large and minimized gene set) and qRT-PCR data. We found that the ratio of the diagonal SD to the dynamic range was the best method for assessing agreement on a gene-by-gene basis.

CONCLUSIONS

Centroid-based algorithms are robust classifiers for breast cancer subtype assignment across platforms and procurement conditions.

摘要

背景

微阵列研究已确定具有预后意义的不同乳腺癌分子亚型。为了将这些分类方法应用于临床实验室,我们开发了一种实时定量逆转录(qRT)-PCR检测方法,用于从新鲜冷冻(FF)和福尔马林固定石蜡包埋(FFPE)组织中诊断乳腺癌的生物学亚型。

方法

我们将124份乳腺样本的微阵列数据作为训练集,将肿瘤分为4种先前定义的分子亚型:管腔型、HER2(+)/ER(-)型、基底样型和正常样型。我们使用2种不同的基于质心的算法中的训练集数据,来预测从FF和FFPE组织中获取的35个乳腺肿瘤(测试集)的样本类别(70个样本)。我们基于大型和最小化基因集对样本进行分类。我们在实时qRT-PCR检测中使用最小化基因集,以从FF和FFPE组织中预测样本亚型。我们通过几种一致性测量方法评估了不同取材方法之间引物组的性能。

结果

使用qRT-PCR和最小化的“内在”基因集(40个分类器),基于质心的算法在对FFPE组织进行分类时完全一致。当比较通过微阵列(大型和最小化基因集)从FF组织获得的亚型分类与qRT-PCR数据时,诊断算法之间的一致性为94%(35个中的33个)。我们发现,对角线标准差与动态范围的比值是逐基因评估一致性的最佳方法。

结论

基于质心的算法是跨平台和取材条件进行乳腺癌亚型分类的可靠分类器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验