Hoya Tetsuya, Washizawa Yoshikazu
Department of Mathematics, College of Science and Technology, Nihon University, Tokyo 101-8308, Japan.
IEEE Trans Neural Netw. 2007 May;18(3):732-44. doi: 10.1109/TNN.2006.889940.
In this paper, a novel exemplar-based constructive approach using kernels is proposed for simultaneous pattern classification and multidomain pattern association tasks. The kernel networks are constructed on a modular basis by a simple one-shot self-structuring algorithm motivated from the traditional Hebbian principle and then, they act as the flexible memory capable of generalization for the respective classes. In the self-structuring kernel memory (SSKM), any arduous and iterative network parameter tuning is not involved for establishing the weight connections during the construction, unlike conventional approaches, and thereby, it is considered that the networks do not inherently suffer from the associated numerical instability. Then, the approach is extended for multidomain pattern association, in which a particular domain input cannot only activate some kernel units (KUs) but also the kernels in other domain(s) via the cross-domain connection(s) in between. Thereby, the SSKM can be regarded as a simultaneous pattern classifier and associator. In the simulation study for pattern classification, it is justified that an SSKM consisting of distinct kernel networks can yield relatively compact-sized pattern classifiers, while preserving a reasonably high generalization capability, in comparison with the approach using support vector machines (SVMs).
本文提出了一种基于样本的新型核构造方法,用于同时进行模式分类和多域模式关联任务。核网络通过一种基于传统赫布原理的简单一次性自构造算法在模块化基础上构建,然后,它们作为能够对各个类别进行泛化的灵活存储器。在自构造核存储器(SSKM)中,与传统方法不同,在构建过程中建立权重连接时不涉及任何繁重且迭代的网络参数调整,因此,认为这些网络本质上不会遭受相关的数值不稳定性。然后,该方法扩展到多域模式关联,其中特定域输入不仅可以激活一些核单元(KUs),还可以通过它们之间的跨域连接激活其他域中的核。因此,SSKM可被视为同时模式分类器和关联器。在模式分类的仿真研究中,与使用支持向量机(SVM)的方法相比,由不同核网络组成的SSKM能够产生相对紧凑尺寸的模式分类器,同时保持相当高的泛化能力,这一点得到了验证。