Suppr超能文献

一种提高支持向量机性能的几何方法。

A geometrical method to improve performance of the support vector machine.

作者信息

Williams Peter, Li Sheng, Feng Jianfeng, Wu Si

出版信息

IEEE Trans Neural Netw. 2007 May;18(3):942-7. doi: 10.1109/TNN.2007.891625.

Abstract

The performance of a support vector machine (SVM) largely depends on the kernel function used. This letter investigates a geometrical method to optimize the kernel function. The method is a modification of the one proposed by S. Amari and S. Wu. Its concern is the use of the prior knowledge obtained in a primary step training to conformally rescale the kernel function, so that the separation between the two classes of data is enlarged. The result is that the new algorithm works efficiently and overcomes the susceptibility of the original method.

摘要

支持向量机(SVM)的性能在很大程度上取决于所使用的核函数。本文研究了一种优化核函数的几何方法。该方法是对S. Amari和S. Wu提出的方法的改进。其关注点在于利用在初步训练中获得的先验知识对核函数进行共形重新缩放,从而扩大两类数据之间的间隔。结果是新算法高效运行并克服了原方法的易感性。

相似文献

2
An empirical evaluation of the fuzzy kernel perceptron.模糊核感知器的实证评估。
IEEE Trans Neural Netw. 2007 May;18(3):935-7. doi: 10.1109/TNN.2007.891624.
4
Performance of the Bayesian online algorithm for the perceptron.感知器的贝叶斯在线算法性能
IEEE Trans Neural Netw. 2007 May;18(3):902-5. doi: 10.1109/TNN.2007.891189.
7
Blind image deconvolution through support vector regression.基于支持向量回归的盲图像去卷积
IEEE Trans Neural Netw. 2007 May;18(3):931-5. doi: 10.1109/TNN.2007.891622.
9
The pre-image problem in kernel methods.核方法中的原像问题。
IEEE Trans Neural Netw. 2004 Nov;15(6):1517-25. doi: 10.1109/TNN.2004.837781.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验