Suppr超能文献

感知器的贝叶斯在线算法性能

Performance of the Bayesian online algorithm for the perceptron.

作者信息

de Oliveira Evaldo Araújo, Alamino Roberto Castro

出版信息

IEEE Trans Neural Netw. 2007 May;18(3):902-5. doi: 10.1109/TNN.2007.891189.

Abstract

In this letter, we derive continuum equations for the generalization error of the Bayesian online algorithm (BOnA) for the one-layer perceptron with a spherical covariance matrix using the Rosenblatt potential and show, by numerical calculations, that the asymptotic performance of the algorithm is the same as the one for the optimal algorithm found by means of variational methods with the added advantage that the BOnA does not use any inaccessible information during learning.

摘要

在这封信中,我们使用罗森布拉特势推导了具有球形协方差矩阵的单层感知器的贝叶斯在线算法(BOnA)泛化误差的连续方程,并通过数值计算表明,该算法的渐近性能与通过变分方法找到的最优算法相同,此外还有一个额外的优点,即BOnA在学习过程中不使用任何不可获取的信息。

相似文献

1
Performance of the Bayesian online algorithm for the perceptron.感知器的贝叶斯在线算法性能
IEEE Trans Neural Netw. 2007 May;18(3):902-5. doi: 10.1109/TNN.2007.891189.
3
Variational Bayesian approach to canonical correlation analysis.变分贝叶斯方法用于典型相关分析。
IEEE Trans Neural Netw. 2007 May;18(3):905-10. doi: 10.1109/TNN.2007.891186.
5
An empirical evaluation of the fuzzy kernel perceptron.模糊核感知器的实证评估。
IEEE Trans Neural Netw. 2007 May;18(3):935-7. doi: 10.1109/TNN.2007.891624.
6
Global asymptotic stability of delayed cellular neural networks.时滞细胞神经网络的全局渐近稳定性
IEEE Trans Neural Netw. 2007 May;18(3):947-50. doi: 10.1109/tnn.2007.891628.
8
New dynamical optimal learning for linear multilayer FNN.线性多层前馈神经网络的新型动态最优学习
IEEE Trans Neural Netw. 2004 Nov;15(6):1562-8. doi: 10.1109/TNN.2004.830801.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验