Suppr超能文献

感知器的贝叶斯在线算法性能

Performance of the Bayesian online algorithm for the perceptron.

作者信息

de Oliveira Evaldo Araújo, Alamino Roberto Castro

出版信息

IEEE Trans Neural Netw. 2007 May;18(3):902-5. doi: 10.1109/TNN.2007.891189.

Abstract

In this letter, we derive continuum equations for the generalization error of the Bayesian online algorithm (BOnA) for the one-layer perceptron with a spherical covariance matrix using the Rosenblatt potential and show, by numerical calculations, that the asymptotic performance of the algorithm is the same as the one for the optimal algorithm found by means of variational methods with the added advantage that the BOnA does not use any inaccessible information during learning.

摘要

在这封信中,我们使用罗森布拉特势推导了具有球形协方差矩阵的单层感知器的贝叶斯在线算法(BOnA)泛化误差的连续方程,并通过数值计算表明,该算法的渐近性能与通过变分方法找到的最优算法相同,此外还有一个额外的优点,即BOnA在学习过程中不使用任何不可获取的信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验