Suppr超能文献

SNAP:预测非同义多态性对功能的影响。

SNAP: predict effect of non-synonymous polymorphisms on function.

作者信息

Bromberg Yana, Rost Burkhard

机构信息

Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th St., New York, NY 10032, USA.

出版信息

Nucleic Acids Res. 2007;35(11):3823-35. doi: 10.1093/nar/gkm238. Epub 2007 May 25.

Abstract

Many genetic variations are single nucleotide polymorphisms (SNPs). Non-synonymous SNPs are 'neutral' if the resulting point-mutated protein is not functionally discernible from the wild type and 'non-neutral' otherwise. The ability to identify non-neutral substitutions could significantly aid targeting disease causing detrimental mutations, as well as SNPs that increase the fitness of particular phenotypes. Here, we introduced comprehensive data sets to assess the performance of methods that predict SNP effects. Along we introduced SNAP (screening for non-acceptable polymorphisms), a neural network-based method for the prediction of the functional effects of non-synonymous SNPs. SNAP needs only sequence information as input, but benefits from functional and structural annotations, if available. In a cross-validation test on over 80,000 mutants, SNAP identified 80% of the non-neutral substitutions at 77% accuracy and 76% of the neutral substitutions at 80% accuracy. This constituted an important improvement over other methods; the improvement rose to over ten percentage points for mutants for which existing methods disagreed. Possibly even more importantly SNAP introduced a well-calibrated measure for the reliability of each prediction. This measure will allow users to focus on the most accurate predictions and/or the most severe effects. Available at http://www.rostlab.org/services/SNAP.

摘要

许多基因变异都是单核苷酸多态性(SNP)。如果产生的点突变蛋白在功能上与野生型无法区分,那么非同义SNP就是“中性的”,否则就是“非中性的”。识别非中性替代的能力可以显著有助于靶向导致有害突变的疾病,以及增加特定表型适应性的SNP。在这里,我们引入了综合数据集来评估预测SNP效应的方法的性能。同时,我们引入了SNAP(筛选不可接受的多态性),这是一种基于神经网络的方法,用于预测非同义SNP的功能效应。SNAP只需要序列信息作为输入,但如果有功能和结构注释则会从中受益。在对超过80,000个突变体的交叉验证测试中,SNAP以77%的准确率识别出80%的非中性替代,以80%的准确率识别出76%的中性替代。这比其他方法有了重要改进;对于现有方法存在分歧的突变体,改进幅度上升到超过十个百分点。可能更重要的是,SNAP为每个预测的可靠性引入了一种经过良好校准的度量。这种度量将允许用户专注于最准确的预测和/或最严重的影响。可在http://www.rostlab.org/services/SNAP获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c3a/1920242/56c831fee45d/gkm238f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验