Suppr超能文献

KcsA钾通道中Glu-71/Asp-80残基的质子化状态:第一性原理量子力学/分子力学分子动力学研究

The protonation state of the Glu-71/Asp-80 residues in the KcsA potassium channel: a first-principles QM/MM molecular dynamics study.

作者信息

Bucher Denis, Guidoni Leonardo, Rothlisberger Ursula

机构信息

Federal Institute of Technology EPFL, Institute of Chemical Sciences and Engineering, Lausanne, Switzerland.

出版信息

Biophys J. 2007 Oct 1;93(7):2315-24. doi: 10.1529/biophysj.106.102509. Epub 2007 May 25.

Abstract

Although a few x-ray structures of the KcsA K(+) channel have been crystallized several issues concerning the mechanisms of the ionic permeation and the protonation state of the selectivity filter ionizable side chains are still open. Using a first-principles quantum mechanical/molecular mechanical simulation approach, we have investigated the protonation state of Glu-71 and Asp-80, two important residues located in the vicinity of the selectivity filter. Results from the dynamics show that a proton is shared between the two residues, with a slight preference for Glu-71. The proton is found to exchange on the picosecond timescale, an interesting phenomenon that cannot be observed in classical molecular dynamics. Simulations of different ionic loading states of the filter show that the probability for the proton transfer is correlated with the filter occupancy. In addition, the Glu-71/Asp-80 pair is able to modulate the potential energy profile experienced by a K(+) ion as it translates along the pore axis. These theoretical predictions, along with recent experimental results, suggest that changes of the filter structure could be associated with a shift in the Glu-Asp protonation state, which in turn would influence the ion translocation.

摘要

尽管已经获得了KcsA钾离子通道的一些X射线晶体结构,但关于离子渗透机制以及选择性过滤器中可电离侧链的质子化状态等几个问题仍未解决。我们采用第一性原理量子力学/分子力学模拟方法,研究了位于选择性过滤器附近的两个重要残基——谷氨酸-71(Glu-71)和天冬氨酸-80(Asp-80)的质子化状态。动力学结果表明,一个质子在这两个残基之间共享,且略微偏向于谷氨酸-71。发现质子在皮秒时间尺度上进行交换,这是一个在经典分子动力学中无法观察到的有趣现象。对过滤器不同离子负载状态的模拟表明,质子转移的概率与过滤器占有率相关。此外,当钾离子沿孔轴移动时,谷氨酸-71/天冬氨酸-80对能够调节其经历的势能分布。这些理论预测与最近的实验结果表明,过滤器结构的变化可能与谷氨酸-天冬氨酸质子化状态的改变有关,进而影响离子转运。

相似文献

1
2
The ionization state and the conformation of Glu-71 in the KcsA K(+) channel.
Biophys J. 2002 Feb;82(2):772-80. doi: 10.1016/S0006-3495(02)75439-8.
3
Molecular dynamics of the KcsA K(+) channel in a bilayer membrane.
Biophys J. 2000 Jun;78(6):2900-17. doi: 10.1016/S0006-3495(00)76831-7.
4
Side-chain ionization states in a potassium channel.
Biophys J. 2001 Mar;80(3):1210-9. doi: 10.1016/S0006-3495(01)76097-3.
5
A computational study of ion binding and protonation states in the KcsA potassium channel.
Biochim Biophys Acta. 2000 Sep 29;1481(2):360-70. doi: 10.1016/s0167-4838(00)00183-7.
6
Protonation state of E71 in KcsA and its role for channel collapse and inactivation.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15265-70. doi: 10.1073/pnas.1211900109. Epub 2012 Aug 31.
7
8
Diverse gating in K+ channels: differential role of the pore-helix glutamate in stabilizing the channel pore.
Biochem Biophys Res Commun. 2011 Sep 16;413(1):1-4. doi: 10.1016/j.bbrc.2011.08.062. Epub 2011 Aug 22.
9
In silico activation of KcsA K+ channel by lateral forces applied to the C-termini of inner helices.
Biophys J. 2004 Sep;87(3):1526-36. doi: 10.1529/biophysj.103.037770.
10
Determination of the charge profile in the KcsA selectivity filter using ab initio calculations and molecular dynamics simulations.
Phys Chem Chem Phys. 2009 Oct 14;11(38):8606-13. doi: 10.1039/b905991a. Epub 2009 Jul 24.

引用本文的文献

1
Fluoride Transport and Inhibition Across CLC Transporters.
Handb Exp Pharmacol. 2024;283:81-100. doi: 10.1007/164_2022_593.
3
The influence of membrane bilayer thickness on KcsA channel activity.
Channels (Austin). 2019 Dec;13(1):424-439. doi: 10.1080/19336950.2019.1676367.
4
Chloride Ion Transport by the CLC Cl/H Antiporter: A Combined Quantum-Mechanical and Molecular-Mechanical Study.
Front Chem. 2018 Mar 13;6:62. doi: 10.3389/fchem.2018.00062. eCollection 2018.
5
Modeling and simulation of ion channels.
Chem Rev. 2012 Dec 12;112(12):6250-84. doi: 10.1021/cr3002609. Epub 2012 Oct 4.
6
Protonation state of E71 in KcsA and its role for channel collapse and inactivation.
Proc Natl Acad Sci U S A. 2012 Sep 18;109(38):15265-70. doi: 10.1073/pnas.1211900109. Epub 2012 Aug 31.
8
Ion selectivity in channels and transporters.
J Gen Physiol. 2011 May;137(5):415-26. doi: 10.1085/jgp.201010577.
9
Molecular simulations of ion channels: a quantum chemist's perspective.
J Gen Physiol. 2010 Jun;135(6):549-54. doi: 10.1085/jgp.201010404.
10
Computational analysis of membrane proteins: the largest class of drug targets.
Drug Discov Today. 2009 Dec;14(23-24):1130-5. doi: 10.1016/j.drudis.2009.08.006. Epub 2009 Sep 3.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
2
Polarization effects and charge transfer in the KcsA potassium channel.
Biophys Chem. 2006 Dec 1;124(3):292-301. doi: 10.1016/j.bpc.2006.04.008. Epub 2006 Apr 26.
3
Molecular determinants of gating at the potassium-channel selectivity filter.
Nat Struct Mol Biol. 2006 Apr;13(4):311-8. doi: 10.1038/nsmb1069. Epub 2006 Mar 12.
4
Voltage-dependent gating at the KcsA selectivity filter.
Nat Struct Mol Biol. 2006 Apr;13(4):319-22. doi: 10.1038/nsmb1070. Epub 2006 Mar 12.
5
Allosteric effects of external K+ ions mediated by the aspartate of the GYGD signature sequence in the Kv2.1 K+ channel.
Pflugers Arch. 2006 Mar;451(6):776-92. doi: 10.1007/s00424-005-1515-2. Epub 2005 Nov 10.
6
The influence of amino acid protonation states on molecular dynamics simulations of the bacterial porin OmpF.
Biophys J. 2006 Jan 1;90(1):112-23. doi: 10.1529/biophysj.105.059329. Epub 2005 Sep 23.
7
Crystal structure of a mammalian voltage-dependent Shaker family K+ channel.
Science. 2005 Aug 5;309(5736):897-903. doi: 10.1126/science.1116269. Epub 2005 Jul 7.
8
Probing the role of negatively charged amino acid residues in ion permeation of skeletal muscle ryanodine receptor.
Biophys J. 2005 Jul;89(1):256-65. doi: 10.1529/biophysj.104.056002. Epub 2005 Apr 29.
9
A gate in the selectivity filter of potassium channels.
Structure. 2005 Apr;13(4):591-600. doi: 10.1016/j.str.2004.12.019.
10
An inactivation stabilizer of the Na+ channel acts as an opportunistic pore blocker modulated by external Na+.
J Gen Physiol. 2005 May;125(5):465-81. doi: 10.1085/jgp.200409156. Epub 2005 Apr 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验