Suppr超能文献

核苷酸对肌动蛋白结构和动力学的影响。

Nucleotide effects on the structure and dynamics of actin.

作者信息

Zheng Xiange, Diraviyam Karthikeyan, Sept David

机构信息

Center for Computational Biology and Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63130, USA.

出版信息

Biophys J. 2007 Aug 15;93(4):1277-83. doi: 10.1529/biophysj.107.109215. Epub 2007 May 25.

Abstract

Adenosine 5'-triphosphate or ATP is the primary energy source within the cell, releasing its energy via hydrolysis into adenosine 5'-diphosphate or ADP. Actin is an important ATPase involved in many aspects of cellular function, and the binding and hydrolysis of ATP regulates its polymerization into actin filaments as well as its interaction with a host of actin-associated proteins. Here we study the dynamics of monomeric actin in ATP, ADP-Pi, and ADP states via molecular dynamics simulations. As observed in some crystal structures we see that the DNase-I loop is an alpha-helix in the ADP state but forms an unstructured coil domain in the ADP-Pi and ATP states. We also find that this secondary structure change is reversible, and by mimicking nucleotide exchange we can observe the transition between the helical and coil states. Apart from the DNase-I loop, we also see several key structural differences in the nucleotide binding cleft as well as in the hydrophobic cleft between subdomains 1 and 3 where WH2-containing proteins have been shown to interact. These differences provide a structural basis for understanding the observed differences between the various nucleotide states of actin and provide some insight into how ATP regulates the interaction of actin with itself and other proteins.

摘要

三磷酸腺苷(ATP)是细胞内的主要能量来源,通过水解成二磷酸腺苷(ADP)释放能量。肌动蛋白是一种重要的ATP酶,参与细胞功能的许多方面,ATP的结合和水解调节其聚合成肌动蛋白丝以及与许多肌动蛋白相关蛋白的相互作用。在这里,我们通过分子动力学模拟研究了单体肌动蛋白在ATP、ADP-磷酸(ADP-Pi)和ADP状态下的动力学。正如在一些晶体结构中观察到的,我们发现脱氧核糖核酸酶I(DNase-I)环在ADP状态下是α螺旋,但在ADP-Pi和ATP状态下形成无结构的卷曲结构域。我们还发现这种二级结构变化是可逆的,通过模拟核苷酸交换,我们可以观察到螺旋态和卷曲态之间的转变。除了DNase-I环,我们还在核苷酸结合裂隙以及1和3亚结构域之间的疏水裂隙中看到了几个关键的结构差异,含WH2的蛋白质已被证明在这些区域相互作用。这些差异为理解肌动蛋白不同核苷酸状态之间观察到的差异提供了结构基础,并为ATP如何调节肌动蛋白与自身及其他蛋白质的相互作用提供了一些见解。

相似文献

1
Nucleotide effects on the structure and dynamics of actin.
Biophys J. 2007 Aug 15;93(4):1277-83. doi: 10.1529/biophysj.107.109215. Epub 2007 May 25.
2
Allostery of actin filaments: molecular dynamics simulations and coarse-grained analysis.
Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13111-6. doi: 10.1073/pnas.0503732102. Epub 2005 Aug 31.
3
The crystal structure of uncomplexed actin in the ADP state.
Science. 2001 Jul 27;293(5530):708-11. doi: 10.1126/science.1059700.
4
Nucleotide-dependent conformational states of actin.
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):12723-8. doi: 10.1073/pnas.0902092106. Epub 2009 Jul 20.
5
Crystal structures of expressed non-polymerizable monomeric actin in the ADP and ATP states.
J Biol Chem. 2006 Oct 20;281(42):31909-19. doi: 10.1074/jbc.M601973200. Epub 2006 Aug 18.
6
Crystal structure of monomeric actin in the ATP state. Structural basis of nucleotide-dependent actin dynamics.
J Biol Chem. 2003 Sep 5;278(36):34172-80. doi: 10.1074/jbc.M303689200. Epub 2003 Jun 17.
7
Stability and dynamics of G-actin: back-door water diffusion and behavior of a subdomain 3/4 loop.
Biophys J. 1997 Aug;73(2):624-39. doi: 10.1016/S0006-3495(97)78098-6.
9
A nucleotide state-sensing region on actin.
J Biol Chem. 2010 Aug 13;285(33):25591-601. doi: 10.1074/jbc.M110.123869. Epub 2010 Jun 8.
10
The role of ATP, ADP and divalent cations in the formation of binary and ternary complexes of actin, cofilin and DNase I.
Electrophoresis. 2000 Nov;21(17):3863-9. doi: 10.1002/1522-2683(200011)21:17<3863::AID-ELPS3863>3.0.CO;2-C.

引用本文的文献

1
Spa2 remodels ADP-actin via molecular condensation under glucose starvation.
Nat Commun. 2024 May 27;15(1):4491. doi: 10.1038/s41467-024-48863-4.
2
-Means Clustering Coarse-Graining (KMC-CG): A Next Generation Methodology for Determining Optimal Coarse-Grained Mappings of Large Biomolecules.
J Chem Theory Comput. 2023 Dec 12;19(23):8987-8997. doi: 10.1021/acs.jctc.3c01053. Epub 2023 Nov 13.
3
the Understanding of ACD Toxicity with the Discovery of Cyclic Forms of Actin Oligomers.
Int J Mol Sci. 2021 Jan 13;22(2):718. doi: 10.3390/ijms22020718.
4
Effects of Nucleotide and End-Dependent Actin Conformations on Polymerization.
Biophys J. 2020 Nov 3;119(9):1800-1810. doi: 10.1016/j.bpj.2020.09.024. Epub 2020 Sep 28.
5
Insights into Actin Polymerization and Nucleation Using a Coarse-Grained Model.
Biophys J. 2020 Aug 4;119(3):553-566. doi: 10.1016/j.bpj.2020.06.019. Epub 2020 Jul 8.
6
D-loop Dynamics and Near-Atomic-Resolution Cryo-EM Structure of Phalloidin-Bound F-Actin.
Structure. 2020 May 5;28(5):586-593.e3. doi: 10.1016/j.str.2020.04.004. Epub 2020 Apr 28.
7
Conservation of conformational dynamics across prokaryotic actins.
PLoS Comput Biol. 2019 Apr 5;15(4):e1006683. doi: 10.1371/journal.pcbi.1006683. eCollection 2019 Apr.
9
Mechanism of actin polymerization revealed by cryo-EM structures of actin filaments with three different bound nucleotides.
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4265-4274. doi: 10.1073/pnas.1807028115. Epub 2019 Feb 13.
10
Two Deafness-Causing Actin Mutations (DFNA20/26) Have Allosteric Effects on the Actin Structure.
Biophys J. 2016 Jul 26;111(2):323-332. doi: 10.1016/j.bpj.2016.06.012.

本文引用的文献

1
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
3
Crystal structures of expressed non-polymerizable monomeric actin in the ADP and ATP states.
J Biol Chem. 2006 Oct 20;281(42):31909-19. doi: 10.1074/jbc.M601973200. Epub 2006 Aug 18.
5
Actin-bound structures of Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 and the implications for filament assembly.
Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16644-9. doi: 10.1073/pnas.0507021102. Epub 2005 Nov 7.
6
Scalable molecular dynamics with NAMD.
J Comput Chem. 2005 Dec;26(16):1781-802. doi: 10.1002/jcc.20289.
7
The crystal structure of a cross-linked actin dimer suggests a detailed molecular interface in F-actin.
Proc Natl Acad Sci U S A. 2005 Sep 13;102(37):13105-10. doi: 10.1073/pnas.0506429102. Epub 2005 Sep 1.
8
A hierarchical approach to all-atom protein loop prediction.
Proteins. 2004 May 1;55(2):351-67. doi: 10.1002/prot.10613.
9
ADF/cofilin use an intrinsic mode of F-actin instability to disrupt actin filaments.
J Cell Biol. 2003 Dec 8;163(5):1057-66. doi: 10.1083/jcb.200308144. Epub 2003 Dec 1.
10
Solution properties of tetramethylrhodamine-modified G-actin.
Biophys J. 2003 Oct;85(4):2466-75. doi: 10.1016/S0006-3495(03)74669-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验