Suppr超能文献

转录共抑制因子LEUNIG与组蛋白去乙酰化酶HDA19以及中介体成分MED14(SWP)和CDK8(HEN3)相互作用以抑制转录。

The transcription corepressor LEUNIG interacts with the histone deacetylase HDA19 and mediator components MED14 (SWP) and CDK8 (HEN3) to repress transcription.

作者信息

Gonzalez Deyarina, Bowen Adam J, Carroll Thomas S, Conlan R Steven

机构信息

Institute of Life Science, School of Medicine, University of Wales Swansea, Singleton Park, Swansea SA2 8PP, United Kingdom.

出版信息

Mol Cell Biol. 2007 Aug;27(15):5306-15. doi: 10.1128/MCB.01912-06. Epub 2007 May 25.

Abstract

Transcription corepressors are general regulators controlling the expression of genes involved in multiple signaling pathways and developmental programs. Repression is mediated through mechanisms including the stabilization of a repressive chromatin structure over control regions and regulation of Mediator function inhibiting RNA polymerase II activity. Using whole-genome arrays we show that the Arabidopsis thaliana corepressor LEUNIG, a member of the GroTLE transcription corepressor family, regulates the expression of multiple targets in vivo. LEUNIG has a role in the regulation of genes involved in a number of different physiological processes including disease resistance, DNA damage response, and cell signaling. We demonstrate that repression of in vivo LEUNIG targets is achieved through histone deacetylase (HDAC)-dependent and -independent mechanisms. HDAC-dependent mechanisms involve direct interaction with HDA19, a class 1 HDAC, whereas an HDAC-independent repression activity involves interactions with the putative Arabidopsis Mediator components AtMED14/SWP and AtCDK8/HEN3. We suggest that changes in chromatin structure coupled with regulation of Mediator function are likely to be utilized by LEUNIG in the repression of gene transcription.

摘要

转录共抑制因子是控制参与多种信号通路和发育程序的基因表达的通用调节因子。抑制作用通过多种机制介导,包括在控制区域稳定抑制性染色质结构以及调节中介体功能以抑制RNA聚合酶II的活性。利用全基因组阵列,我们发现拟南芥共抑制因子LEUNIG(GroTLE转录共抑制因子家族的成员)在体内调节多个靶标的表达。LEUNIG在调控涉及多种不同生理过程的基因中发挥作用,这些生理过程包括抗病性、DNA损伤反应和细胞信号传导。我们证明,体内LEUNIG靶标的抑制是通过组蛋白脱乙酰酶(HDAC)依赖性和非依赖性机制实现的。HDAC依赖性机制涉及与1类HDAC HDA19的直接相互作用,而HDAC非依赖性抑制活性涉及与推定的拟南芥中介体组分AtMED14/SWP和AtCDK8/HEN3的相互作用。我们认为,LEUNIG可能利用染色质结构的变化以及中介体功能的调节来抑制基因转录。

相似文献

2
Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2.
J Mol Biol. 2001 Jun 22;309(5):1007-15. doi: 10.1006/jmbi.2001.4742.
4
A mechanism of COOH-terminal binding protein-mediated repression.
Mol Cancer Res. 2005 Oct;3(10):575-83. doi: 10.1158/1541-7786.MCR-05-0088.
6
A transcriptional repression motif in the MADS factor AGL15 is involved in recruitment of histone deacetylase complex components.
Plant J. 2008 Jan;53(1):172-85. doi: 10.1111/j.1365-313X.2007.03336.x. Epub 2007 Nov 12.
7
Corepressor requirement and thyroid hormone receptor function during Xenopus development.
Vitam Horm. 2004;68:209-30. doi: 10.1016/S0083-6729(04)68007-1.
8
Histone deacetylase 3 interacts with and deacetylates myocyte enhancer factor 2.
Mol Cell Biol. 2007 Feb;27(4):1280-95. doi: 10.1128/MCB.00882-06. Epub 2006 Dec 11.
10
APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development.
Development. 2006 Aug;133(16):3159-66. doi: 10.1242/dev.02498. Epub 2006 Jul 19.

引用本文的文献

1
Epigenetic regulation of lignin biosynthesis in wood formation.
New Phytol. 2025 Feb;245(4):1589-1607. doi: 10.1111/nph.20328. Epub 2024 Dec 5.
2
Arabidopsis MORC1 and MED9 Interact to Regulate Defense Gene Expression and Plant Fitness.
Plant Pathol J. 2024 Oct;40(5):438-450. doi: 10.5423/PPJ.OA.07.2024.0107. Epub 2024 Oct 1.
3
Suppression of SlHDT1 expression increases fruit yield and decreases drought and salt tolerance in tomato.
Plant Mol Biol. 2024 Sep 23;114(5):101. doi: 10.1007/s11103-024-01503-3.
5
The Mediator Complex: A Central Coordinator of Plant Adaptive Responses to Environmental Stresses.
Int J Mol Sci. 2022 May 31;23(11):6170. doi: 10.3390/ijms23116170.
6
Gene Family Analysis of Eight Rosaceae Genomes Reveals the Genomic Marker of Cold Stress in .
Int J Mol Sci. 2022 May 25;23(11):5957. doi: 10.3390/ijms23115957.
8
Genetic Insight Into the Insect Resistance in Bread Wheat Exploiting the Untapped Natural Diversity.
Front Genet. 2022 Feb 11;13:828905. doi: 10.3389/fgene.2022.828905. eCollection 2022.
9
Mapping Resistance to Argentinean () Head Blight Isolates in Wheat.
Int J Mol Sci. 2021 Dec 20;22(24):13653. doi: 10.3390/ijms222413653.

本文引用的文献

1
APETALA1 and SEPALLATA3 interact with SEUSS to mediate transcription repression during flower development.
Development. 2006 Aug;133(16):3159-66. doi: 10.1242/dev.02498. Epub 2006 Jul 19.
2
TOPLESS regulates apical embryonic fate in Arabidopsis.
Science. 2006 Jun 9;312(5779):1520-3. doi: 10.1126/science.1123841.
3
Erasure of histone acetylation by Arabidopsis HDA6 mediates large-scale gene silencing in nucleolar dominance.
Genes Dev. 2006 May 15;20(10):1283-93. doi: 10.1101/gad.1417706. Epub 2006 Apr 28.
4
SEUSS and LEUNIG regulate cell proliferation, vascular development and organ polarity in Arabidopsis petals.
Planta. 2006 Sep;224(4):801-11. doi: 10.1007/s00425-006-0264-6. Epub 2006 Apr 20.
5
Ca2+/calmodulin is critical for brassinosteroid biosynthesis and plant growth.
Nature. 2005 Sep 29;437(7059):741-5. doi: 10.1038/nature03973.
7
An auxin-responsive SCARECROW-like transcriptional activator interacts with histone deacetylase.
Plant Mol Biol. 2004 May;55(3):417-31. doi: 10.1007/s11103-004-0892-9.
8
Ultraviolet-B signalling: Arabidopsis brassinosteroid mutants are defective in UV-B regulated defence gene expression.
Plant Physiol Biochem. 2004 Sep;42(9):687-94. doi: 10.1016/j.plaphy.2004.06.011.
9
The role of SEUSS in auxin response and floral organ patterning.
Development. 2004 Oct;131(19):4697-707. doi: 10.1242/dev.01306.
10
Transcriptional repression of target genes by LEUNIG and SEUSS, two interacting regulatory proteins for Arabidopsis flower development.
Proc Natl Acad Sci U S A. 2004 Aug 3;101(31):11494-9. doi: 10.1073/pnas.0403055101. Epub 2004 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验