Ma Hongyan, Su Liwei, Zhang Wen, Sun Yi, Li Danning, Li Shuang, Lin Ying-Chung Jimmy, Zhou Chenguang, Li Wei
State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China.
Department of Life Science, National Taiwan University, Taipei, 10617, Taiwan, China.
New Phytol. 2025 Feb;245(4):1589-1607. doi: 10.1111/nph.20328. Epub 2024 Dec 5.
Lignin, a major wood component, is the key limiting factor for wood conversion efficiency. Its biosynthesis is controlled by transcriptional regulatory networks involving transcription factor (TF)-DNA interactions. However, the epigenetic mechanisms underlying these interactions in lignin biosynthesis remain largely unknown. Here, using yeast one-hybrid, chromatin immunoprecipitation, and electrophoretic mobility shift assays, we identified that PtrbZIP44-A1, a key wood-forming TF, directly interacts with the promoters of PtrCCoAOMT2 and PtrCCR2, genes involved in the monolignol biosynthetic pathway. We used yeast two-hybrid, bimolecular fluorescence complementation, biochemical analyses, transient and CRISPR-mediated transgenesis in Populus trichocarpa to demonstrate that PtrHDA15, a histone deacetylase, acts as an epigenetic inhibitor and is recruited by PtrbZIP44-A1 for chromatin histone modifications to repress PtrCCoAOMT2 and PtrCCR2, leading to reduced lignin deposition. In transgenic lines overexpressing PtrbZIP44-A1 or PtrHDA15, histone acetylation at the promoters of PtrCCoAOMT2 and PtrCCR2 decreased, reducing their expression and lignin content. Conversely, in loss-of-function ptrbzip44-a1 and ptrhda15 mutants, histone acetylation levels at PtrCCoAOMT2 and PtrCCR2 promoters increased, enhancing target gene expression and lignin content. Our study uncovered an epigenetic mechanism that suppresses lignin biosynthesis. This finding may help fill a knowledge gap between epigenetic regulation and lignin biosynthesis during wood formation in Populus.
木质素是木材的主要成分,是限制木材转化效率的关键因素。其生物合成受涉及转录因子(TF)-DNA相互作用的转录调控网络控制。然而,木质素生物合成中这些相互作用的表观遗传机制仍 largely未知。在这里,我们使用酵母单杂交、染色质免疫沉淀和电泳迁移率变动分析,确定了关键的木材形成转录因子PtrbZIP44-A1与参与单体木质素生物合成途径的PtrCCoAOMT2和PtrCCR2基因的启动子直接相互作用。我们使用酵母双杂交、双分子荧光互补、生化分析、在毛果杨中进行瞬时和CRISPR介导的转基因实验,以证明组蛋白脱乙酰酶PtrHDA15作为表观遗传抑制剂,被PtrbZIP44-A1招募用于染色质组蛋白修饰,从而抑制PtrCCoAOMT2和PtrCCR2,导致木质素沉积减少。在过表达PtrbZIP44-A1或PtrHDA15的转基因株系中,PtrCCoAOMT2和PtrCCR2启动子处的组蛋白乙酰化减少,降低了它们的表达和木质素含量。相反,在功能缺失的ptrbzip44-a1和ptrhda15突变体中,PtrCCoAOMT2和PtrCCR2启动子处的组蛋白乙酰化水平增加,增强了靶基因表达和木质素含量。我们的研究揭示了一种抑制木质素生物合成的表观遗传机制。这一发现可能有助于填补杨树木材形成过程中表观遗传调控与木质素生物合成之间的知识空白。