Kindaichi Tomonori, Tsushima Ikuo, Ogasawara Yuji, Shimokawa Masaki, Ozaki Noriatsu, Satoh Hisashi, Okabe Satoshi
Department of Social and Environmental Engineering, Graduate School of Engineering, Hiroshima University, Higashihiroshima, Japan.
Appl Environ Microbiol. 2007 Aug;73(15):4931-9. doi: 10.1128/AEM.00156-07. Epub 2007 May 25.
We investigated autotrophic anaerobic ammonium-oxidizing (anammox) biofilms for their spatial organization, community composition, and in situ activities by using molecular biological techniques combined with microelectrodes. Results of phylogenetic analysis and fluorescence in situ hybridization (FISH) revealed that "Brocadia"-like anammox bacteria that hybridized with the Amx820 probe dominated, with 60 to 92% of total bacteria in the upper part (<1,000 microm) of the biofilm, where high anammox activity was mainly detected with microelectrodes. The relative abundance of anammox bacteria decreased along the flow direction of the reactor. FISH results also indicated that Nitrosomonas-, Nitrosospira-, and Nitrosococcus-like aerobic ammonia-oxidizing bacteria (AOB) and Nitrospira-like nitrite-oxidizing bacteria (NOB) coexisted with anammox bacteria and accounted for 13 to 21% of total bacteria in the biofilms. Microelectrode measurements at three points along the anammox reactor revealed that the NH(4)(+) and NO(2)(-) consumption rates decreased from 0.68 and 0.64 micromol cm(-2) h(-1) at P2 (the second port, 170 mm from the inlet port) to 0.30 and 0.35 micromol cm(-2) h(-1) at P3 (the third port, 205 mm from the inlet port), respectively. No anammox activity was detected at P4 (the fourth port, 240 mm from the inlet port), even though sufficient amounts of NH(4)(+) and NO(2)(-) and a high abundance of anammox bacteria were still present. This result could be explained by the inhibitory effect of organic compounds derived from biomass decay and/or produced by anammox and coexisting bacteria in the upper parts of the biofilm and in the upstream part of the reactor. The anammox activities in the biofilm determined by microelectrodes reflected the overall reactor performance. The several groups of aerobic AOB lineages, Nitrospira-like NOB, and Betaproteobacteria coexisting in the anammox biofilm might consume a trace amount of O(2) or organic compounds, which consequently established suitable microenvironments for anammox bacteria.
我们运用分子生物学技术结合微电极,对自养厌氧氨氧化(anammox)生物膜的空间组织、群落组成及原位活性进行了研究。系统发育分析和荧光原位杂交(FISH)结果显示,与Amx820探针杂交的类“Brocadia”厌氧氨氧化菌占主导,在生物膜上部(<1000微米)占细菌总数的60%至92%,微电极主要在此处检测到较高的厌氧氨氧化活性。厌氧氨氧化菌的相对丰度沿反应器流动方向降低。FISH结果还表明,类硝化单胞菌、类硝化螺菌和类硝化球菌的好氧氨氧化细菌(AOB)以及类硝化螺旋菌的亚硝酸盐氧化细菌(NOB)与厌氧氨氧化菌共存,占生物膜中细菌总数的13%至21%。沿厌氧氨氧化反应器三个点的微电极测量结果显示,NH₄⁺和NO₂⁻消耗速率分别从P2(第二个端口,距入口端口170毫米)处的0.68和0.64微摩尔·厘米⁻²·小时⁻¹降至P3(第三个端口,距入口端口205毫米)处的0.30和0.35微摩尔·厘米⁻²·小时⁻¹。在P4(第四个端口,距入口端口240毫米)未检测到厌氧氨氧化活性,尽管仍存在足量的NH₄⁺和NO₂⁻以及高丰度的厌氧氨氧化菌。这一结果可由生物膜上部和反应器上游部分生物量衰减产生的有机化合物以及厌氧氨氧化菌和共存细菌产生的有机化合物的抑制作用来解释。微电极测定的生物膜中的厌氧氨氧化活性反映了整个反应器的性能。厌氧氨氧化生物膜中共存的几类好氧AOB谱系、类硝化螺旋菌NOB和β-变形菌可能消耗微量的O₂或有机化合物,从而为厌氧氨氧化菌建立了适宜的微环境。