Larrondo Luis F, Canessa Paulo, Melo Francisco, Polanco Rubén, Vicuña Rafael
Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile and Instituto Milenio de Biología Fundamental y Aplicada, Santiago, Chile.
Microbiology (Reading). 2007 Jun;153(Pt 6):1772-1780. doi: 10.1099/mic.0.2006/003442-0.
MCO1, a multicopper oxidase from Phanerochaete chrysosporium exhibiting strong ferroxidase activity, has recently been described. This enzyme shows biochemical and structural similarities with the yeast Fet3p, a type I membrane glycoprotein that efficiently oxidizes Fe(II) to Fe(III) for its subsequent transport to the intracellular compartment by the iron permease Ftr1p. The genome database of P. chrysosporium was searched to verify whether it includes a canonical fet3 in addition to mco1, and single copies of fet3 and ftr1 orthologues were found, separated by a divergent promoter. Pc-fet3 encodes a 628 aa protein that exhibits overall identities of about 40 % with other reported Fet3 proteins. In addition to a secretion signal, it has a C-terminal transmembrane domain, characteristic of these cell-surface-attached ferroxidases. Structural modelling of Pc-Fet3 revealed that the active site has all the residues known to be essential for ferroxidase activity. Pc-ftr1 encodes a 393 aa protein that shows about 38 % identity with several Ftr1 proteins from ascomycetes. Northern hybridization studies showed that the mRNA levels of both genes are reduced upon supplementation of the growth medium with iron, supporting the functional coupling of Fet3 and Ftr1 proteins in vivo.
最近描述了一种来自黄孢原毛平革菌的多铜氧化酶MCO1,它具有很强的铁氧化酶活性。这种酶与酵母Fet3p在生化和结构上具有相似性,Fet3p是一种I型膜糖蛋白,能有效地将Fe(II)氧化为Fe(III),随后通过铁通透酶Ftr1p将其转运到细胞内区室。搜索了黄孢原毛平革菌的基因组数据库,以验证除mco1外是否还包含一个典型的fet3,结果发现了fet3和ftr1直系同源基因的单拷贝,它们由一个不同的启动子隔开。Pc-fet3编码一个628个氨基酸的蛋白质,与其他已报道的Fet3蛋白质的总体同源性约为40%。除了一个分泌信号外它还有一个C端跨膜结构域,这是这些细胞表面附着的铁氧化酶的特征。Pc-Fet3的结构建模表明,活性位点具有所有已知对铁氧化酶活性至关重要的残基。Pc-ftr1编码一个393个氨基酸的蛋白质,与来自子囊菌的几种Ftr1蛋白质的同源性约为38%。Northern杂交研究表明,在生长培养基中添加铁后,这两个基因的mRNA水平均降低,这支持了Fet3和Ftr1蛋白在体内的功能偶联。