Block Kai Tobias, Uecker Martin, Frahm Jens
Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut für Biophysikalische Chemie, Göttingen, Germany.
Magn Reson Med. 2007 Jun;57(6):1086-98. doi: 10.1002/mrm.21236.
The reconstruction of artifact-free images from radially encoded MRI acquisitions poses a difficult task for undersampled data sets, that is for a much lower number of spokes in k-space than data samples per spoke. Here, we developed an iterative reconstruction method for undersampled radial MRI which (i) is based on a nonlinear optimization, (ii) allows for the incorporation of prior knowledge with use of penalty functions, and (iii) deals with data from multiple coils. The procedure arises as a two-step mechanism which first estimates the coil profiles and then renders a final image that complies with the actual observations. Prior knowledge is introduced by penalizing edges in coil profiles and by a total variation constraint for the final image. The latter condition leads to an effective suppression of undersampling (streaking) artifacts and further adds a certain degree of denoising. Apart from simulations, experimental results for a radial spin-echo MRI sequence are presented for phantoms and human brain in vivo at 2.9 T using 24, 48, and 96 spokes with 256 data samples. In comparison to conventional reconstructions (regridding) the proposed method yielded visually improved image quality in all cases.
从径向编码的磁共振成像(MRI)采集中重建无伪影图像,对于欠采样数据集而言是一项艰巨的任务,即k空间中的采样线数量远低于每条采样线的数据样本数量。在此,我们针对欠采样径向MRI开发了一种迭代重建方法,该方法(i)基于非线性优化,(ii)允许通过使用惩罚函数纳入先验知识,并且(iii)处理来自多个线圈的数据。该过程是一种两步机制,首先估计线圈轮廓,然后生成符合实际观测结果的最终图像。通过对线圈轮廓中的边缘进行惩罚以及对最终图像施加总变差约束来引入先验知识。后一条件有效地抑制了欠采样(条纹)伪影,并进一步增加了一定程度的去噪效果。除了模拟结果外,还给出了在2.9 T场强下针对体模和人体大脑的径向自旋回波MRI序列的实验结果,使用了24、48和96条采样线以及256个数据样本。与传统重建方法(重采样)相比,所提出的方法在所有情况下都在视觉上提高了图像质量。