Noordman Constant R, Borgers Steffan J W, Boomsma Martijn F, Kwee Thomas C, van der Lees Marloes M G, Overduin Christiaan G, de Rooij Maarten, Yakar Derya, Fütterer Jurgen J, Huisman Henkjan J
Radboud University Medical Center, Department of Medical Imaging, Nijmegen, The Netherlands.
Isala, Department of Radiology, Zwolle, The Netherlands.
J Med Imaging (Bellingham). 2025 May;12(3):035001. doi: 10.1117/1.JMI.12.3.035001. Epub 2025 Jun 3.
Interventional MR imaging struggles with speed and efficiency. We aim to accelerate transrectal in-bore MR-guided biopsies for prostate cancer through undersampled image reconstruction and instrument localization by image segmentation.
In this single-center retrospective study, we used 8464 MR 2D multislice scans from 1289 patients undergoing a prostate biopsy to train and test a deep learning-based spatiotemporal MR image reconstruction model and a nnU-Net segmentation model. The dataset was synthetically undersampled using various undersampling rates ( , 16, 25, 32). An annotated, unseen subset of these data was used to compare our model with a nontemporal model and readers in a reader study involving seven radiologists from three centers based in the Netherlands. We assessed a maximum noninferior undersampling rate using instrument prediction success rate and instrument tip position (ITP) error.
The maximum noninferior undersampling rate is 16-times for the temporal model (ITP error: 2.28 mm, 95% CI: 1.68 to 3.31, mean difference from reference standard: 0.63 mm, ), whereas a nontemporal model could not produce noninferior image reconstructions comparable to our reference standard. Furthermore, the nontemporal model (ITP error: 6.27 mm, 95% CI: 3.90 to 9.07) and readers (ITP error: 6.87 mm, 95% CI: 6.38 to 7.40) had low instrument prediction success rates (46% and 60%, respectively) compared with the temporal model's 95%.
Deep learning-based spatiotemporal MR image reconstruction can improve time-critical intervention tasks such as instrument tracking. We found 16 times undersampling as the maximum noninferior acceleration where image quality is preserved, ITP error is minimized, and the instrument prediction success rate is maximized.
介入性磁共振成像在速度和效率方面存在困难。我们旨在通过欠采样图像重建和基于图像分割的器械定位来加速经直肠腔内磁共振引导的前列腺癌活检。
在这项单中心回顾性研究中,我们使用了1289例接受前列腺活检患者的8464幅磁共振二维多层扫描图像,来训练和测试基于深度学习的时空磁共振图像重建模型和nnU-Net分割模型。使用各种欠采样率( 、16、25、32)对数据集进行综合欠采样。在一项涉及来自荷兰三个中心的七名放射科医生的读者研究中,使用这些数据的一个带注释的、未见过的子集,将我们的模型与一个非时间模型以及读者进行比较。我们使用器械预测成功率和器械尖端位置(ITP)误差评估最大非劣效欠采样率。
时间模型的最大非劣效欠采样率为16倍(ITP误差:2.28毫米,95%置信区间:1.68至3.31,与参考标准的平均差异:0.63毫米, ),而一个非时间模型无法产生与我们的参考标准相当的非劣效图像重建。此外,与时间模型95%的成功率相比,非时间模型(ITP误差:6.27毫米,95%置信区间:3.90至9.07)和读者(ITP误差:6.87毫米,95%置信区间:6.38至7.40)的器械预测成功率较低(分别为46%和60%)。
基于深度学习的时空磁共振图像重建可以改善诸如器械跟踪等对时间要求较高的干预任务。我们发现16倍欠采样是在保持图像质量、最小化ITP误差和最大化器械预测成功率的情况下的最大非劣效加速率。