Huang Feng, Vijayakumar Sathya, Li Yu, Hertel Sarah, Reza Shahed, Duensing George R
Advanced Concept Development, Invivo Corporation, Gainesville, FL 32603, USA.
Magn Reson Med. 2007 Jun;57(6):1075-85. doi: 10.1002/mrm.21233.
Generalized autocalibrating partially parallel acquisitions (GRAPPA), an important parallel imaging technique, can be easily applied to radial k-space data by segmenting the k-space. The previously reported radial GRAPPA method requires extra calibration data to determine the relative shift operators. In this work it is shown that pseudo-full k-space data can be generated from the partially acquired radial data by filtering in image space followed by inverse gridding. The relative shift operators can then be approximated from the pseudo-full k-space data. The self-calibration method using pseudo-full k-space data can be applied in both k and k-t space. This technique avoids the prescans and hence improves the applicability of radial GRAPPA to image static tissue, and makes k-t GRAPPA applicable to radial trajectory. Experiments show that radial GRAPPA calibrated with pseudo-full calibration data generates results similar to radial GRAPPA calibrated with the true full k-space data for that image. If motion occurs during acquisition, self-calibrated radial GRAPPA protects structural information better than externally calibrated GRAPPA. However, radial GRAPPA calibrated with pseudo-full calibration data suffers from residual streaking artifacts when the reduction factor is high. Radial k-t GRAPPA calibrated with pseudo-full calibration data generates reduced errors compared to the sliding-window method and temporal GRAPPA (TGRAPPA).
广义自校准部分并行采集(GRAPPA)是一种重要的并行成像技术,通过对k空间进行分割可轻松应用于径向k空间数据。先前报道的径向GRAPPA方法需要额外的校准数据来确定相对移位算子。在这项工作中表明,通过在图像空间中滤波然后进行逆网格化,可以从部分采集的径向数据生成伪全k空间数据。然后可以从伪全k空间数据中近似得到相对移位算子。使用伪全k空间数据的自校准方法可应用于k空间和k-t空间。该技术避免了预扫描,因此提高了径向GRAPPA对静态组织成像的适用性,并使k-t GRAPPA适用于径向轨迹。实验表明,用伪全校准数据校准的径向GRAPPA生成的结果与用该图像的真实全k空间数据校准的径向GRAPPA相似。如果在采集过程中发生运动,自校准径向GRAPPA比外部校准的GRAPPA能更好地保护结构信息。然而,当缩减因子较高时,用伪全校准数据校准的径向GRAPPA会出现残留条纹伪影。与滑动窗口方法和时间GRAPPA(TGRAPPA)相比,用伪全校准数据校准的径向k-t GRAPPA产生的误差更小。