Suppr超能文献

用于肾脏磁共振血管造影的三维时间飞跃径向GRAPPA技术

Three-dimensional through-time radial GRAPPA for renal MR angiography.

作者信息

Wright Katherine L, Lee Gregory R, Ehses Philipp, Griswold Mark A, Gulani Vikas, Seiberlich Nicole

机构信息

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio, USA.

出版信息

J Magn Reson Imaging. 2014 Oct;40(4):864-74. doi: 10.1002/jmri.24439. Epub 2014 Jan 21.

Abstract

PURPOSE

To achieve high temporal and spatial resolution for contrast-enhanced time-resolved MR angiography exams (trMRAs), fast imaging techniques such as non-Cartesian parallel imaging must be used. In this study, the three-dimensional (3D) through-time radial generalized autocalibrating partially parallel acquisition (GRAPPA) method is used to reconstruct highly accelerated stack-of-stars data for time-resolved renal MRAs.

MATERIALS AND METHODS

Through-time radial GRAPPA has been recently introduced as a method for non-Cartesian GRAPPA weight calibration, and a similar concept can also be used in 3D acquisitions. By combining different sources of calibration information, acquisition time can be reduced. Here, different GRAPPA weight calibration schemes are explored in simulation, and the results are applied to reconstruct undersampled stack-of-stars data.

RESULTS

Simulations demonstrate that an accurate and efficient approach to 3D calibration is to combine a small number of central partitions with as many temporal repetitions as exam time permits. These findings were used to reconstruct renal trMRA data with an in-plane acceleration factor as high as 12.6 with respect to the Nyquist sampling criterion, where the lowest root mean squared error value of 16.4% was achieved when using a calibration scheme with 8 partitions, 16 repetitions, and a 4 projection × 8 read point segment size.

CONCLUSION

3D through-time radial GRAPPA can be used to successfully reconstruct highly accelerated non-Cartesian data. By using in-plane radial undersampling, a trMRA can be acquired with a temporal footprint less than 4s/frame with a spatial resolution of approximately 1.5 mm × 1.5 mm × 3 mm.

摘要

目的

为实现对比增强时间分辨磁共振血管造影检查(trMRA)的高时间和空间分辨率,必须使用非笛卡尔并行成像等快速成像技术。在本研究中,采用三维(3D)逐时径向广义自校准部分并行采集(GRAPPA)方法来重建用于时间分辨肾脏MRA的高度加速的星状堆叠数据。

材料与方法

逐时径向GRAPPA最近被引入作为一种非笛卡尔GRAPPA权重校准方法,类似的概念也可用于3D采集。通过组合不同的校准信息源,可以减少采集时间。在此,在模拟中探索了不同的GRAPPA权重校准方案,并将结果应用于重建欠采样的星状堆叠数据。

结果

模拟表明,一种准确且高效的3D校准方法是将少量中心分区与检查时间允许的尽可能多的时间重复相结合。这些发现被用于重建肾脏trMRA数据,相对于奈奎斯特采样标准,面内加速因子高达12.6,当使用具有8个分区、16次重复和4投影×8读取点段大小的校准方案时,实现了16.4%的最低均方根误差值。

结论

3D逐时径向GRAPPA可用于成功重建高度加速的非笛卡尔数据。通过使用面内径向欠采样,可以采集时间占用小于4s/帧、空间分辨率约为1.5mm×1.5mm×3mm的trMRA。

相似文献

1
Three-dimensional through-time radial GRAPPA for renal MR angiography.
J Magn Reson Imaging. 2014 Oct;40(4):864-74. doi: 10.1002/jmri.24439. Epub 2014 Jan 21.
6
Towards high-resolution 4D flow MRI in the human aorta using kt-GRAPPA and B1+ shimming at 7T.
J Magn Reson Imaging. 2016 Aug;44(2):486-99. doi: 10.1002/jmri.25164. Epub 2016 Feb 3.
9
Time-resolved TOF MR angiography in mice using a prospective 3D radial double golden angle approach.
Magn Reson Med. 2015 Mar;73(3):984-94. doi: 10.1002/mrm.25201. Epub 2014 Mar 10.

引用本文的文献

1
Reconstruction techniques for accelerating dynamic cardiovascular magnetic resonance imaging.
J Cardiovasc Magn Reson. 2025 Mar 6;27(1):101873. doi: 10.1016/j.jocmr.2025.101873.
2
An in silico validation framework for quantitative DCE-MRI techniques based on a dynamic digital phantom.
Med Image Anal. 2021 Oct;73:102186. doi: 10.1016/j.media.2021.102186. Epub 2021 Jul 20.
3
Self-calibrated interpolation of non-Cartesian data with GRAPPA in parallel imaging.
Magn Reson Med. 2020 May;83(5):1837-1850. doi: 10.1002/mrm.28033. Epub 2019 Nov 13.
4
Realistic 4D MRI abdominal phantom for the evaluation and comparison of acquisition and reconstruction techniques.
Magn Reson Med. 2019 Mar;81(3):1863-1875. doi: 10.1002/mrm.27545. Epub 2018 Nov 5.
5
Recent advances in parallel imaging for MRI.
Prog Nucl Magn Reson Spectrosc. 2017 Aug;101:71-95. doi: 10.1016/j.pnmrs.2017.04.002. Epub 2017 May 2.
6
Cardiac 4D phase-contrast CMR at 9.4 T using self-gated ultra-short echo time (UTE) imaging.
J Cardiovasc Magn Reson. 2017 Mar 31;19(1):39. doi: 10.1186/s12968-017-0351-9.
8
Real-time free-breathing cardiac imaging with self-calibrated through-time radial GRAPPA.
Magn Reson Med. 2017 Jan;77(1):250-264. doi: 10.1002/mrm.26112. Epub 2016 Mar 10.
9
A review of 3D first-pass, whole-heart, myocardial perfusion cardiovascular magnetic resonance.
J Cardiovasc Magn Reson. 2015 Aug 1;17(1):68. doi: 10.1186/s12968-015-0162-9.
10
Rapid volumetric T1 mapping of the abdomen using three-dimensional through-time spiral GRAPPA.
Magn Reson Med. 2016 Apr;75(4):1457-65. doi: 10.1002/mrm.25693. Epub 2015 May 18.

本文引用的文献

1
Combined renal MRA and perfusion with a single dose of contrast.
Magn Reson Imaging. 2012 Jul;30(6):878-85. doi: 10.1016/j.mri.2011.12.027. Epub 2012 Apr 20.
2
Improved temporal resolution in cardiac imaging using through-time spiral GRAPPA.
Magn Reson Med. 2011 Dec;66(6):1682-8. doi: 10.1002/mrm.22952. Epub 2011 Apr 26.
3
Improved radial GRAPPA calibration for real-time free-breathing cardiac imaging.
Magn Reson Med. 2011 Feb;65(2):492-505. doi: 10.1002/mrm.22618. Epub 2010 Sep 24.
4
Peripheral vasculature: high-temporal- and high-spatial-resolution three-dimensional contrast-enhanced MR angiography.
Radiology. 2009 Dec;253(3):831-43. doi: 10.1148/radiol.2533081744. Epub 2009 Sep 29.
9
Anisotropic field-of-views in radial imaging.
IEEE Trans Med Imaging. 2008 Jan;27(1):47-57. doi: 10.1109/TMI.2007.902799.
10
High-speed spiral-scan echo planar NMR imaging-I.
IEEE Trans Med Imaging. 1986;5(1):2-7. doi: 10.1109/TMI.1986.4307732.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验