Suppr超能文献

心理测量函数上任意点的贝叶斯自适应估计。

Bayesian adaptive estimation of arbitrary points on a psychometric function.

作者信息

García-Pérez Miguel A, Alcalá-Quintana Rocío

机构信息

Departamento de Metodología, Facultad de Psicología, Universidad Complutense, Madrid, Spain.

出版信息

Br J Math Stat Psychol. 2007 May;60(Pt 1):147-74. doi: 10.1348/000711006X104596.

Abstract

Bayesian adaptive methods have been extensively used in psychophysics to estimate the point at which performance on a task attains arbitrary percentage levels, although the statistical properties of these estimators have never been assessed. We used simulation techniques to determine the small-sample properties of Bayesian estimators of arbitrary performance points, specifically addressing the issues of bias and precision as a function of the target percentage level. The study covered three major types of psychophysical task (yes-no detection, 2AFC discrimination and 2AFC detection) and explored the entire range of target performance levels allowed for by each task. Other factors included in the study were the form and parameters of the actual psychometric function Psi, the form and parameters of the model function M assumed in the Bayesian method, and the location of Psi within the parameter space. Our results indicate that Bayesian adaptive methods render unbiased estimators of any arbitrary point on psi only when M=Psi, and otherwise they yield bias whose magnitude can be considerable as the target level moves away from the midpoint of the range of Psi. The standard error of the estimator also increases as the target level approaches extreme values whether or not M=Psi. Contrary to widespread belief, neither the performance level at which bias is null nor that at which standard error is minimal can be predicted by the sweat factor. A closed-form expression nevertheless gives a reasonable fit to data describing the dependence of standard error on number of trials and target level, which allows determination of the number of trials that must be administered to obtain estimates with prescribed precision.

摘要

贝叶斯自适应方法已在心理物理学中广泛应用,用于估计任务表现达到任意百分比水平时的临界点,尽管这些估计器的统计特性从未得到评估。我们使用模拟技术来确定任意表现点的贝叶斯估计器的小样本特性,具体探讨偏差和精度作为目标百分比水平函数的问题。该研究涵盖了三种主要类型的心理物理学任务(是-否检测、二择一迫选辨别和二择一迫选检测),并探索了每个任务允许的整个目标表现水平范围。该研究中包含的其他因素包括实际心理测量函数Psi的形式和参数、贝叶斯方法中假设的模型函数M的形式和参数,以及Psi在参数空间中的位置。我们的结果表明,只有当M = Psi时,贝叶斯自适应方法才能给出psi上任意点的无偏估计器,否则,随着目标水平远离Psi范围的中点,它们会产生相当大的偏差。无论M = Psi与否,估计器的标准误差也会随着目标水平接近极值而增加。与普遍看法相反,偏差为零的表现水平和标准误差最小的表现水平都不能通过汗水因素来预测。然而,一个封闭形式的表达式能够合理地拟合描述标准误差与试验次数和目标水平之间依赖关系的数据,这使得能够确定为了获得具有规定精度的估计必须进行的试验次数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验