Herrero Pilar, Kisrieva-Ware Zulfia, Dence Carmen S, Patterson Bruce, Coggan Andrew R, Han Dong-Ho, Ishii Yosuke, Eisenbeis Paul, Gropler Robert J
Division of Radiological Sciences, Edward Mallinckrodt Institute of Radiology, St. Louis, Missouri 63110, USA.
J Nucl Med. 2007 Jun;48(6):955-64. doi: 10.2967/jnumed.106.037598.
The aim of this study was to investigate whether compartmental modeling of 1-(11)C-glucose PET kinetics can be used for noninvasive measurements of myocardial glucose metabolism beyond its initial extraction.
1-(11)C-Glucose and U-(13)C-glucose were injected simultaneously into 22 mongrel dogs under a wide range of metabolic states; this was followed by 1 h of PET data acquisition. Heart tissue samples were analyzed for (13)C-glycogen content (nmol/g). Arterial and coronary sinus blood samples (ART/CS) were analyzed for glucose (mumol/mL), (11)C-glucose, (11)CO(2), and (11)C-total acidic metabolites ((11)C-lactate [LA] + (11)CO(2)) (counts/min/mL) and were used to calculate myocardial fractions of (a) glucose and 1-(11)C-glucose extractions, EF(GLU) and EF((11)C-GLU); (b) (11)C-GLU and (11)C-LA oxidation, OF((11)C-GLU) and OF((11)C-LA); (c) (11)C-glycolsysis, GCF((11)C-GLU); and (d) (11)C-glycogen content, GNF((11)C-GLU). On the basis of these measurements, a compartmental model (M) that accounts for the contribution of exogenous (11)C-LA to myocardial (11)C activity was implemented to measure M-EF(GLU), M-GCF(GLU), M-OF(GLU), M-GNF(GLU), and the fraction of myocardial glucose stored as glycogen M-GNF(GLU)/M-EF(GLU)).
ART/CS data showed the following: (a) A strong correlation was found between EF((11)C-GLU) and EF(GLU) (r = 0.92, P < 0.0001; slope = 0.95, P = not significantly different from 1). (b) In interventions with high glucose extraction and oxidation, the contribution of OF((11)C-GLU) to total oxidation was higher than that of OF((11)C-LA) (P < 0.01). In contrast, in interventions in which glucose uptake and oxidation were inhibited, OF((11)C-LA) was higher than OF((11)C-GLU) (P < 0.05). (c) A strong correlation was found between GNF((11)C-GLU)/EF(GLU) and direct measurements of fractional (13)C-glycogen content, (r = 0.96, P < 0.0001). Model-derived PET measurements of M-EF(GLU), M-GCF(GLU), and M-OF(GLU) strongly correlated with EF(GLU) (slope = 0.92, r = 0.95, P < 0.0001), GCF((11)C-GLU) (slope = 0.79, r = 0.97, P < 0.0001), and OF((11)C-GLU) (slope = 0.70, r = 0.96, P < 0.0001), respectively. M-GNF(GLU)/M-EF(GLU) strongly correlated with fractional (13)C-content (r = 0.92, P < 0.0001).
Under nonischemic conditions, it is feasible to measure myocardial glucose metabolism noninvasively beyond its initial extraction with PET using 1-(11)C-glucose and a compartmental modeling approach that takes into account uptake and oxidation of secondarily labeled exogenous (11)C-lactate.
本研究的目的是调查1-(11)C-葡萄糖PET动力学的房室模型是否可用于无创测量心肌葡萄糖代谢,超越其初始摄取阶段。
在广泛的代谢状态下,将1-(11)C-葡萄糖和U-(13)C-葡萄糖同时注入22只杂种犬体内;随后进行1小时的PET数据采集。分析心脏组织样本中的(13)C-糖原含量(nmol/g)。分析动脉和冠状窦血样本(ART/CS)中的葡萄糖(μmol/mL)、1-(11)C-葡萄糖、(11)CO₂和(11)C-总酸性代谢产物((11)C-乳酸[LA]+(11)CO₂)(计数/分钟/mL),并用于计算心肌中以下各项的分数:(a)葡萄糖和1-(11)C-葡萄糖摄取分数,EF(GLU)和EF((11)C-GLU);(b)(11)C-GLU和(11)C-LA氧化分数,OF((11)C-GLU)和OF((11)C-LA);(c)(11)C-糖酵解分数,GCF((11)C-GLU);(d)(11)C-糖原含量,GNF((11)C-GLU)。基于这些测量结果,实施了一个房室模型(M),该模型考虑了外源性(11)C-LA对心肌(11)C活性的贡献,以测量M-EF(GLU)、M-GCF(GLU)、M-OF(GLU)、M-GNF(GLU)以及作为糖原储存的心肌葡萄糖分数M-GNF(GLU)/M-EF(GLU)。
ART/CS数据显示如下:(a)在EF((11)C-GLU)和EF(GLU)之间发现了很强的相关性(r = 0.92,P < 0.0001;斜率 = 0.95,P与1无显著差异)。(b)在高葡萄糖摄取和氧化的干预中,OF((11)C-GLU)对总氧化的贡献高于OF((11)C-LA)(P < 0.01)。相反,在葡萄糖摄取和氧化受到抑制的干预中,OF((11)C-LA)高于OF((11)C-GLU)(P < 0.05)。(c)在GNF((11)C-GLU)/EF(GLU)和(13)C-糖原含量分数的直接测量之间发现了很强的相关性(r = 0.96,P < 0.0001)。模型推导的PET测量值M-EF(GLU)、M-GCF(GLU)和M-OF(GLU)分别与EF(GLU)(斜率 = 0.92,r = 0.95,P < 0.0001)、GCF((11)C-GLU)(斜率 = 0.79,r = 0.97,P < 0.0001)和OF((11)C-GLU)(斜率 = 0.70,r = 0.96,P < 0.0001)高度相关。M-GNF(GLU)/M-EF(GLU)与(13)C-含量分数高度相关(r = 0.92,P < 0.0001)。
在非缺血条件下,使用1-(11)C-葡萄糖和考虑了二次标记外源性(11)C-乳酸摄取和氧化的房室模型方法,通过PET无创测量心肌葡萄糖代谢超越其初始摄取阶段是可行的。