Herrero Pilar, Kim Joonyoung, Sharp Terry L, Engelbach John A, Lewis Jason S, Gropler Robert J, Welch Michael J
Division of Radiological Sciences, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
J Nucl Med. 2006 Mar;47(3):477-85.
This feasibility study was undertaken to determine whether myocardial blood flow (MBF, mL/g/min) could be quantified noninvasively in small rodents using microPET and 15O-water or 1-11C-acetate.
MBF was measured in 18 healthy rats using PET and 15O-water (MBF-W) under different interventions and compared with direct measurements obtained with microspheres (MBF-M). Subsequently, MBF was estimated in 24 rats at rest using 1-11C-acetate (MBF-Ace) and compared with measurements obtained with 15O-water. Using factor analysis, images were processed to obtain 1 blood and 1 myocardial time-activity curve per tracer per study. MBF-W was calculated using a well-validated 1-compartment kinetic model. MBF-Ace was estimated using a simple 1-compartment model to estimate net tracer uptake, K1 (K1 (mL/g/min) = MBF.E; E = first-pass myocardial extraction of 1-11C-acetate) and washout (k2 (min(-1))) along with F(BM) (spillover correction) after fixing F(MM) (partial-volume correction) to values obtained from 15O-water modeling. K1 values were converted to MBF values using a first-pass myocardial extraction/flow relationship measured in rats (E = 1.0-0.74.exp(-1.13/MBF)).
In the first study, MBF-W correlated well with MBF-M (y = 0.74x + 0.96; n = 18, r = 0.91, P < 0.0001). However, the slope was different than unity, P < 0.05). Refitting of the data after forcing the intercept to be zero resulted in a nonbias correlation between MBF-W and MBF-M (y = 0.95x + 0.0; n = 18, r = 0.86, P < 0.0001) demonstrating that the underestimation of the slope could be attributed to the overestimation of MBF-W for 2 MBF-M values lower than 1.50 mL/g/min. In the second study, MBF-Ace values correlated well with MBF-W with no underestimation of MBF (y = 0.91x + 0.35; n = 24, r = 0.87, P < 0.0001).
MBF can be quantified by PET using (15)O-water or 1-11C-acetate in healthy rats. Future studies are needed to determine the accuracy of the methods in low-flow states and to develop an approach for a partial-volume correction when 1-11C-acetate is used.
本可行性研究旨在确定是否可使用微型正电子发射断层扫描(microPET)及(^{15}O) - 水或(^{11}C) - 乙酸盐对小型啮齿动物的心肌血流量(MBF,毫升/克/分钟)进行无创定量。
在不同干预条件下,使用正电子发射断层扫描(PET)及(^{15}O) - 水(MBF - W)对18只健康大鼠的心肌血流量进行测量,并与微球法获得的直接测量值(MBF - M)进行比较。随后,使用(^{11}C) - 乙酸盐(MBF - Ace)对24只静息状态下的大鼠的心肌血流量进行估计,并与(^{15}O) - 水测量值进行比较。使用因子分析对图像进行处理,以在每项研究中为每种示踪剂获取1条血液和1条心肌时间 - 活性曲线。MBF - W使用经过充分验证的单室动力学模型进行计算。MBF - Ace使用简单的单室模型进行估计,以估计示踪剂净摄取量(K1)((K1)(毫升/克/分钟)= MBF.E;E = (^{11}C) - 乙酸盐的首过心肌提取率)以及洗脱率((k2)(分钟(^{-1}))),并在将(F(MM))(部分容积校正)固定为从(^{15}O) - 水建模获得的值后,结合(F(BM))(溢出校正)。使用在大鼠中测量的首过心肌提取/血流关系(E = 1.0 - 0.74.exp(-1.13/MBF))将(K1)值转换为MBF值。
在第一项研究中,MBF - W与MBF - M具有良好的相关性(y = 0.74x + 0.96;n = 18,r = 0.91,P < 0.0001)。然而,斜率不同于1(P < 0.05)。在将截距强制设为零后对数据进行重新拟合,结果显示MBF - W与MBF - M之间存在无偏差相关性(y = 0.95x + 0.0;n = 18,r = 0.86,P < 0.0001),这表明斜率的低估可归因于对于低于1.50毫升/克/分钟的2个MBF - M值,MBF - W的高估。在第二项研究中,MBF - Ace值与MBF - W具有良好的相关性,且未低估MBF(y = 0.91x + 0.35;n = 24,r = 0.87,P < 0.0001)。
在健康大鼠中,可使用(^{15}O) - 水或(^{11}C) - 乙酸盐通过PET对心肌血流量进行定量。未来需要开展研究以确定这些方法在低血流状态下的准确性,并在使用(^{11}C) - 乙酸盐时开发一种部分容积校正方法。