Gorroochurn Prakash, Hodge Susan E, Heiman Gary A, Greenberg David A
Division of Statistical Genetics, Department of Biostatistics, Columbia University, New York, NY 10032, USA.
Hum Hered. 2007;64(3):149-59. doi: 10.1159/000102988. Epub 2007 May 25.
The HapMap project has given case-control association studies a unique opportunity to uncover the genetic basis of complex diseases. However, persistent issues in such studies remain the proper quantification of, testing for, and correction for population stratification (PS). In this paper, we present the first unified paradigm that addresses all three fundamental issues within one statistical framework. Our unified approach makes use of an omnibus quantity (delta), which can be estimated in a case-control study from suitable null loci. We show how this estimated value can be used to quantify PS, to statistically test for PS, and to correct for PS, all in the context of case-control studies. Moreover, we provide guidelines for interpreting values of delta in association studies (e.g., at alpha = 0.05, a delta of size 0.416 is small, a delta of size 0.653 is medium, and a delta of size 1.115 is large). A novel feature of our testing procedure is its ability to test for either strictly any PS or only 'practically important' PS. We also performed simulations to compare our correction procedure with Genomic Control (GC). Our results show that, unlike GC, it maintains good Type I error rates and power across all levels of PS.
HapMap计划为病例对照关联研究提供了一个独特的机会,以揭示复杂疾病的遗传基础。然而,此类研究中一直存在的问题仍然是群体分层(PS)的恰当量化、检验及校正。在本文中,我们提出了首个统一范式,在一个统计框架内解决所有这三个基本问题。我们的统一方法利用了一个综合量(δ),它可以在病例对照研究中从合适的无效位点进行估计。我们展示了如何在病例对照研究的背景下,利用这个估计值来量化PS、对PS进行统计检验以及校正PS。此外,我们提供了在关联研究中解释δ值的指南(例如,在α = 0.05时,大小为0.416的δ为小,大小为0.653的δ为中等,大小为1.115的δ为大)。我们检验程序的一个新颖特点是它能够检验严格意义上的任何PS或者仅检验“实际重要的”PS。我们还进行了模拟,将我们的校正程序与基因组控制(GC)进行比较。我们的结果表明,与GC不同,它在所有PS水平上都保持了良好的I型错误率和检验效能。