Lin Amy Y, Ai Zhuming, Lee Sang-Chul, Bajcsy Peter, Pe'er Jacob, Leach Lu, Maniotis Andrew J, Folberg Robert
Department of Pathology, University of Illinois at Chicago, 340 S. Wood Street, Room 110 (MC 847), Chicago, IL 60612, USA.
Appl Immunohistochem Mol Morphol. 2007 Mar;15(1):113-9. doi: 10.1097/01.pai.0000210414.15375.47.
We previously described techniques to generate 3-dimensional reconstructions of the tumor microcirculation using immunofluorescence histochemistry and laser scanning confocal microscopy on serial sections from archival formalin-fixed, paraffin-embedded tissues. By aligning sequential z-stacks in an immersive visualization environment (ImmersaDesk), the need to insert fiduciary markers into tissue was eliminated. In this study, we developed methods to stitch overlapping confocal z-series together to extend the surface area of interest well beyond that captured by the confocal microscope objective and developed methods to quantify the distribution of markers of interest in 3 dimensions. These techniques were applied to the problem of comparing the surface area of nonendothelial cell-lined, laminin-rich looping vasculogenic mimicry (VM) patterns that are known to transmit fluid, with the surface area of endothelial cell-lined vessels in metastatic uveal melanoma to the liver in 3 dimensions. After labeling sections with antibodies to CD34 and laminin, the surface area of VM patterns to vessels was calculated by segmenting out structures that labeled with laminin but not with CD34 from those structures labeling with CD34, or CD34 and laminin. In metastatic uveal melanoma tissues featuring colocalization of high microvascular density [66.4 microvessels adjusted for 0.313 mm2 area (range 56.7 to 72.7)] and VM patterning, the surface area of VM patterns was 11.6-fold greater (range 10.8 to 14.1) than the surface provided by CD34-positive vessels. These methods may be extended to visualize and quantify molecular markers in 3 dimensions in a variety of pathologic entities from archival paraffin-embedded tissues.
我们之前描述了一些技术,可利用免疫荧光组织化学和激光扫描共聚焦显微镜,对来自存档的福尔马林固定、石蜡包埋组织的连续切片进行肿瘤微循环的三维重建。通过在沉浸式可视化环境(ImmersaDesk)中对齐连续的z轴堆叠,消除了在组织中插入基准标记的需求。在本研究中,我们开发了将重叠的共聚焦z系列拼接在一起的方法,以将感兴趣的表面积扩展到远超过共聚焦显微镜物镜所捕获的范围,并开发了在三维空间中量化感兴趣标记物分布的方法。这些技术被应用于比较已知可传输液体的非内皮细胞衬里、富含层粘连蛋白的环状血管生成拟态(VM)模式的表面积与转移性葡萄膜黑色素瘤肝转移灶中内皮细胞衬里血管的表面积这一问题。在用抗CD34和层粘连蛋白抗体标记切片后,通过从用CD34或CD34与层粘连蛋白标记的结构中分割出用层粘连蛋白而非CD34标记的结构,来计算VM模式与血管的表面积。在具有高微血管密度[每0.313平方毫米面积调整后为66.4个微血管(范围为56.7至72.7)]和VM模式共定位的转移性葡萄膜黑色素瘤组织中,VM模式的表面积比CD34阳性血管提供的表面积大11.6倍(范围为10.8至14.1)。这些方法可扩展用于可视化和量化存档石蜡包埋组织中各种病理实体的三维分子标记物。