Suppr超能文献

大肠杆菌双精氨酸转运酶的TatA亚基具有N端向内的拓扑结构。

The TatA subunit of Escherichia coli twin-arginine translocase has an N-in topology.

作者信息

Chan Catherine S, Zlomislic Marian R, Tieleman D Peter, Turner Raymond J

机构信息

Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada.

出版信息

Biochemistry. 2007 Jun 26;46(25):7396-404. doi: 10.1021/bi7005288. Epub 2007 May 31.

Abstract

The twin-arginine translocase (Tat) system is used by many bacteria to translocate folded proteins across the cytoplasmic membrane. The TatA subunit is the predicted pore-forming subunit and has been shown to form a homo-oligomeric complex. Through accessibility experiments using the thiol-reactive reagents 4-acetamido-4'-maleimidylstilbene-2,2'-disulfonic acid and Nalpha-(3-maleimidylproprionyl)biocytin toward site-specific cysteine mutants in TatA, we show that the N-terminus of TatA is located in the cytoplasm rather than the previously assumed periplasm. We also confirm previous observations that the C-terminus has a dual topology. By treatment with the membrane uncoupler carbonyl cyanide-m-chlorophenyl hydrazone, we show that the topological state of the C-terminus is dependent on the membrane potential. These results suggest two architectures of TatA in the membrane: one with a single transmembrane helix and the other with two transmembrane helices. Molecular models of both topologies were used to develop and cartoon a homo-oligomeric complex as a channel with a diameter of approximately 50 A and suggest that the double transmembrane helix topology might be the building block for the translocation channel. Additionally, in vivo cross-linking experiments of Gly2Cys and Thr22Cys mutants showed that Gly2, at the beginning of transmembrane helix-1, is in close proximity with Gly2 of a neighboring TatA, as Cys2 cross-linked immediately upon the addition of copper phenanthroline. On the other hand, Cys22, at the other end of the transmembrane helix, took at least 10 min to cross-link, suggesting that a possible movement or reorientation is required to bring this residue into proximity with a neighboring TatA subunit.

摘要

许多细菌利用双精氨酸转运酶(Tat)系统将折叠好的蛋白质转运穿过细胞质膜。TatA亚基被认为是形成孔道的亚基,并且已被证明能形成同型寡聚复合物。通过使用硫醇反应试剂4-乙酰氨基-4'-马来酰亚胺基芪-2,2'-二磺酸和Nα-(3-马来酰亚胺基丙酰基)生物素对TatA中位点特异性半胱氨酸突变体进行可及性实验,我们发现TatA的N端位于细胞质中,而非先前认为的周质中。我们还证实了之前的观察结果,即C端具有双重拓扑结构。通过用膜解偶联剂羰基氰化物间氯苯腙处理,我们发现C端的拓扑状态取决于膜电位。这些结果表明TatA在膜中有两种结构:一种具有单个跨膜螺旋,另一种具有两个跨膜螺旋。两种拓扑结构的分子模型被用于构建和绘制一个直径约为50埃的同型寡聚复合物通道,这表明双跨膜螺旋拓扑结构可能是转运通道的构建模块。此外,Gly2Cys和Thr22Cys突变体的体内交联实验表明,跨膜螺旋-1起始处的Gly2与相邻TatA的Gly2紧密相邻,因为加入铜菲咯啉后Cys2立即发生交联。另一方面,跨膜螺旋另一端的Cys22至少需要10分钟才能交联,这表明可能需要某种移动或重新定向才能使该残基与相邻的TatA亚基靠近。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验