Horticultural Sciences Department and Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida 32611, USA.
J Biol Chem. 2012 Oct 5;287(41):34752-63. doi: 10.1074/jbc.M112.385666. Epub 2012 Aug 15.
Twin arginine transport (Tat) systems transport folded proteins using proton-motive force as sole energy source. The thylakoid Tat system comprises three membrane components. A complex composed of cpTatC and Hcf106 is the twin arginine signal peptide receptor. Signal peptide binding triggers assembly of Tha4 for the translocation step. Tha4 is thought to serve as the protein-conducting element, and the topology it adopts during transport produces the transmembrane passageway. We analyzed Tha4 topology and conformation in actively transporting translocases and compared that with Tha4 in nontransporting membranes. Using cysteine accessibility labeling techniques and diagnostic protease protection assays, we confirm an overall N(OUT)-C(IN) topology for Tha4 that is maintained under transport conditions. Significantly, the amphipathic helix (APH) and C-tail exhibited substantial changes in accessibility when actively engaged in protein transport. Compared with resting state, cysteines within the APH became less accessible to stromally applied modifying reagent. The APH proximal C-tail, although still accessible to Cys-directed reagents, was much less accessible to protease. We attribute these changes in accessibility to indicate the Tha4 conformation that is adopted in the translocase primed for translocation. We propose that in the primed translocase, the APH partitions more extensively and uniformly into the membrane interface and the C-tails pack closer together in a mesh-like network. Implications for the mode by which the substrate protein crosses the bilayer are discussed.
双精氨酸转运 (Tat) 系统使用质子动力作为唯一的能量来源来转运折叠蛋白。类囊体 Tat 系统由三个膜成分组成。由 cpTatC 和 Hcf106 组成的复合物是双精氨酸信号肽受体。信号肽结合触发 Tha4 组装进行易位步骤。Tha4 被认为是蛋白质传导元件,并且在运输过程中采用的拓扑结构产生跨膜通道。我们分析了在主动转运转运酶中 Tha4 的拓扑结构和构象,并将其与非转运膜中的 Tha4 进行了比较。使用半胱氨酸可及性标记技术和诊断蛋白酶保护测定,我们证实 Tha4 具有总体的 N(OUT)-C(IN)拓扑结构,在运输条件下得以维持。重要的是,当主动参与蛋白质运输时,疏水性螺旋 (APH) 和 C 尾的可及性发生了显著变化。与静止状态相比,APH 内的半胱氨酸对基质中应用的修饰试剂的可及性降低。尽管 APH 近端 C 尾仍可被 Cys 导向试剂接近,但对蛋白酶的可及性要低得多。我们将这些可及性的变化归因于表明 Tha4 构象在为易位而启动的转运酶中被采用。我们提出,在启动的转运酶中,APH 更广泛且均匀地分配到膜界面,并且 C 尾以网状网络更紧密地包装在一起。讨论了底物蛋白穿过双层的方式的影响。