Suppr超能文献

十四型肌球蛋白复合物在刚地弓形虫中的固定化。

Immobilization of the type XIV myosin complex in Toxoplasma gondii.

作者信息

Johnson Terezina M, Rajfur Zenon, Jacobson Ken, Beckers Con J

机构信息

Department of Cell and Developmental Biology, The University of North Carolina, Chapel Hill, NC 27599-7090, USA.

出版信息

Mol Biol Cell. 2007 Aug;18(8):3039-46. doi: 10.1091/mbc.e07-01-0040. Epub 2007 May 30.

Abstract

The substrate-dependent movement of apicomplexan parasites such as Toxoplasma gondii and Plasmodium sp. is driven by the interaction of a type XIV myosin with F-actin. A complex containing the myosin-A heavy chain, a myosin light chain, and the accessory protein GAP45 is attached to the membranes of the inner membrane complex (IMC) through its tight interaction with the integral membrane glycoprotein GAP50. For the interaction of this complex with F-actin to result in net parasite movement, it is necessary that the myosin be immobilized with respect to the parasite and the actin with respect to the substrate the parasite is moving on. We report here that the myosin motor complex of Toxoplasma is firmly immobilized in the plane of the IMC. This does not seem to be accomplished by direct interactions with cytoskeletal elements. Immobilization of the motor complex, however, does seem to require cholesterol. Both the motor complex and the cholesterol are found in detergent-resistant membrane domains that encompass a large fraction of the inner membrane complex surface. The observation that the myosin XIV motor complex of Toxoplasma is immobilized within this cholesterol-rich membrane likely extends to closely related pathogens such as Plasmodium and possibly to other eukaryotes.

摘要

诸如弓形虫和疟原虫等顶复门寄生虫的底物依赖性运动是由十四型肌球蛋白与丝状肌动蛋白(F-肌动蛋白)的相互作用驱动的。一个包含肌球蛋白-A重链、一个肌球蛋白轻链和辅助蛋白GAP45的复合体,通过与整合膜糖蛋白GAP50的紧密相互作用,附着在内膜复合体(IMC)的膜上。为了使这个复合体与F-肌动蛋白的相互作用导致寄生虫的净移动,肌球蛋白相对于寄生虫必须固定,而肌动蛋白相对于寄生虫移动所依赖的底物必须固定。我们在此报告,弓形虫的肌球蛋白运动复合体牢固地固定在IMC平面内。这似乎不是通过与细胞骨架元件的直接相互作用来实现的。然而,运动复合体的固定似乎确实需要胆固醇。运动复合体和胆固醇都存在于抗去污剂膜结构域中,这些结构域覆盖了内膜复合体表面的很大一部分。弓形虫的肌球蛋白十四型运动复合体固定在这种富含胆固醇的膜内这一观察结果,可能也适用于疟原虫等密切相关的病原体,甚至可能适用于其他真核生物。

相似文献

1
Immobilization of the type XIV myosin complex in Toxoplasma gondii.
Mol Biol Cell. 2007 Aug;18(8):3039-46. doi: 10.1091/mbc.e07-01-0040. Epub 2007 May 30.
2
GAP45 phosphorylation controls assembly of the Toxoplasma myosin XIV complex.
Eukaryot Cell. 2009 Feb;8(2):190-6. doi: 10.1128/EC.00201-08. Epub 2008 Dec 1.
4
Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii.
J Cell Biol. 2004 May 10;165(3):383-93. doi: 10.1083/jcb.200311137. Epub 2004 May 3.
5
Plasticity between MyoC- and MyoA-glideosomes: an example of functional compensation in Toxoplasma gondii invasion.
PLoS Pathog. 2014 Nov 13;10(10):e1004504. doi: 10.1371/journal.ppat.1004504. eCollection 2014 Oct.
8
10
Structural and mechanistic insights into the function of the unconventional class XIV myosin MyoA from .
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10548-E10555. doi: 10.1073/pnas.1811167115. Epub 2018 Oct 22.

引用本文的文献

2
Myosin A and F-Actin play a critical role in mitochondrial dynamics and inheritance in Toxoplasma gondii.
PLoS Pathog. 2024 Oct 7;20(10):e1012127. doi: 10.1371/journal.ppat.1012127. eCollection 2024 Oct.
3
Myosin A and F-Actin play a critical role in mitochondrial dynamics and inheritance in .
bioRxiv. 2024 Mar 18:2024.03.18.585462. doi: 10.1101/2024.03.18.585462.
4
Unique asymmetric distribution of phosphatidylserine and phosphatidylethanolamine in Toxoplasma gondii revealed by nanoscale analysis.
Histochem Cell Biol. 2023 Oct;160(4):279-291. doi: 10.1007/s00418-023-02218-0. Epub 2023 Jul 21.
5
Plasmodium falciparum GAP40 Plays an Essential Role in Merozoite Invasion and Gametocytogenesis.
Microbiol Spectr. 2023 Jun 15;11(3):e0143423. doi: 10.1128/spectrum.01434-23. Epub 2023 May 30.
6
Xenosurveillance proof-of-principle: Detection of and SARS-CoV-2 antibodies in mosquito blood meals by (pan)-specific ELISAs.
Curr Res Parasitol Vector Borne Dis. 2022 Jan 8;2:100076. doi: 10.1016/j.crpvbd.2022.100076. eCollection 2022.
9
A single Na+-Pi cotransporter in Toxoplasma plays key roles in phosphate import and control of parasite osmoregulation.
PLoS Pathog. 2020 Dec 31;16(12):e1009067. doi: 10.1371/journal.ppat.1009067. eCollection 2020 Dec.
10
Modulates the Host Cell Responses: An Overview of Apoptosis Pathways.
Biomed Res Int. 2019 Apr 4;2019:6152489. doi: 10.1155/2019/6152489. eCollection 2019.

本文引用的文献

1
Dual acylation of the 45 kDa gliding-associated protein (GAP45) in Plasmodium falciparum merozoites.
Mol Biochem Parasitol. 2006 Sep;149(1):113-6. doi: 10.1016/j.molbiopara.2006.04.008. Epub 2006 May 19.
2
Structure of the MTIP-MyoA complex, a key component of the malaria parasite invasion motor.
Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4852-7. doi: 10.1073/pnas.0510907103. Epub 2006 Mar 17.
4
Two types of detergent-insoluble, glycosphingolipid/cholesterol-rich membrane domains from isolated myelin.
J Neurochem. 2005 Sep;94(6):1696-710. doi: 10.1111/j.1471-4159.2005.03331.x. Epub 2005 Jul 25.
5
Lipid rafts-protein association and the regulation of protein activity.
Arch Biochem Biophys. 2004 Jun 15;426(2):208-24. doi: 10.1016/j.abb.2004.03.020.
6
Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii.
J Cell Biol. 2004 May 10;165(3):383-93. doi: 10.1083/jcb.200311137. Epub 2004 May 3.
7
Toxoplasma as a novel system for motility.
Curr Opin Cell Biol. 2004 Feb;16(1):32-40. doi: 10.1016/j.ceb.2003.11.013.
8
Lipid rafts: heterogeneity on the high seas.
Biochem J. 2004 Mar 1;378(Pt 2):281-92. doi: 10.1042/BJ20031672.
9
A rapid method of total lipid extraction and purification.
Can J Biochem Physiol. 1959 Aug;37(8):911-7. doi: 10.1139/o59-099.
10
Host but not parasite cholesterol controls Toxoplasma cell entry by modulating organelle discharge.
Mol Biol Cell. 2003 Sep;14(9):3804-20. doi: 10.1091/mbc.e02-12-0830. Epub 2003 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验