Zuo Yi, Cheng Shaoan, Call Doug, Logan Bruce E
Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, USA.
Environ Sci Technol. 2007 May 1;41(9):3347-53. doi: 10.1021/es0627601.
One of the greatest challenges for using microbial fuel cells (MFCs) for wastewater treatment is creating a scalable architecture that provides large surface areas for oxygen reduction at the cathode and bacteria growth on the anode. We demonstrate here a scalable cathode concept by showing that a tubular ultrafiltration membrane with a conductive graphite coating and a nonprecious metal catalyst (CoTMPP) can be used to produce power in an MFC. Using a carbon paper anode (surface area Aan = 7 cm2, surface area per reactor volume Aan,s = 25 m2/m3), an MFC with two 3-cm tube cathodes (Acat = 27 cm2, Acat,s = 84 m2/m3) generated up to 8.8 W/m3 (403 mW/m2) using glucose [0.8 g/L in a 50 mM phosphate buffer solution (PBS)], which was only slightly less than that produced using a carbon paper cathode with a Pt catalyst (9.9 W/m3, 394 mW/m2; Acat= 7 cm2, Acat,s= 25 m2/m3). Coulombic efficiencies (CEs) with carbon paper anodes were 25-40% with tube cathodes (CoTMPP), compared to 7-19% with a carbon paper cathode. When a high-surface-area graphite brush anode was used (Aan = 2235 cm2, Aan,s = 7700 m2/m3) with two tube cathodes placed inside the reactor (Acat = 27 cm2, Acas, = 93 m2/m3), the MFC produced 17.7 W/m3 with a CE = 70-74% (200 mM PBS). Further increases in the surface area of the tube cathodes to 54 cm2 (120 m2/m3) increased the total power output (from 0.51 to 0.83 mW), but the increase in volume resulted in a constant volumetric power density (approximately 18 W/m3). These results demonstrate that an MFC design using tubular cathodes coated with nonprecious metal catalysts, and brush anodes, is a promising architecture that is intrinsically scalable for creating larger systems. Further increases in power output will be possible through the development of cathodes with lower internal resistances.
利用微生物燃料电池(MFC)处理废水面临的最大挑战之一是构建一种可扩展的结构,该结构要为阴极的氧还原和阳极上细菌的生长提供大的表面积。我们在此展示了一种可扩展的阴极概念,即表明带有导电石墨涂层和非贵金属催化剂(CoTMPP)的管状超滤膜可用于在MFC中发电。使用碳纸阳极(表面积Aan = 7 cm²,每反应器体积的表面积Aan,s = 25 m²/m³),带有两个3厘米管形阴极(Acat = 27 cm²,Acat,s = 84 m²/m³)的MFC使用葡萄糖[在50 mM磷酸盐缓冲溶液(PBS)中为0.8 g/L]时产生的功率高达8.8 W/m³(403 mW/m²),这仅略低于使用带有Pt催化剂的碳纸阴极时产生的功率(9.9 W/m³,394 mW/m²;Acat = 7 cm²,Acat,s = 25 m²/m³)。使用管形阴极(CoTMPP)时,碳纸阳极的库仑效率(CEs)为25 - 40%,而使用碳纸阴极时为7 - 19%。当使用高表面积的石墨刷阳极(Aan = 2235 cm²,Aan,s = 7700 m²/m³)且在反应器内放置两个管形阴极(Acat = 27 cm²,Acas, = 93 m²/m³)时,MFC产生的功率为17.7 W/m³,CE = 70 - 74%(200 mM PBS)。将管形阴极的表面积进一步增加到54 cm²(120 m²/m³)会增加总功率输出(从0.51 mW增加到0.83 mW),但体积的增加导致体积功率密度保持恒定(约18 W/m³)。这些结果表明,使用涂覆有非贵金属催化剂的管形阴极和刷形阳极的MFC设计是一种有前景的结构,本质上可扩展以构建更大的系统。通过开发具有更低内阻的阴极,进一步提高功率输出将是可能的。