Tipparaju Srinivas M, Liu Si-Qi, Barski Oleg A, Bhatnagar Aruni
Institute of Molecular Cardiology, Department of Medicine, 421F Delia Baxter Building, University of Louisville, Louisville, KY 40202, USA.
Biochem Biophys Res Commun. 2007 Jul 27;359(2):269-76. doi: 10.1016/j.bbrc.2007.05.102. Epub 2007 May 24.
Ancillary beta-subunits regulate the voltage-dependence and the kinetics of Kv currents. The Kvbeta proteins bind pyridine nucleotides with high affinity but the role of cofactor binding in regulating Kv currents remains unclear. We found that recombinant rat Kvbeta 1.3 binds NADPH (K(d)=1.8+/-0.02 microM) and NADP(+) (K(d)=5.5+/-0.9 microM). Site-specific modifications at Tyr-307 and Arg-316 decreased NADPH binding; whereas, K(d) NADPH was unaffected by the R241L mutation. COS-7 cells transfected with Kv1.5 cDNA displayed non-inactivating currents. Co-transfection with Kvbeta1.3 accelerated Kv activation and inactivation and induced a hyperpolarizing shift in voltage-dependence of activation. Kvbeta-mediated inactivation of Kv currents was prevented by the Y307F and R316E mutations but not by the R241L substitution. Additionally, the R316E mutation weakened Kvalpha-beta interaction. Inactivation of Kv currents by Kvbeta:R316E was restored when excess NADPH was included in the patch pipette. These observations suggest that NADPH binding is essential for optimal interaction between Kvalpha and beta subunits and for Kvbeta-induced inactivation of Kv currents.
辅助性β亚基调节Kv电流的电压依赖性和动力学。Kvβ蛋白以高亲和力结合吡啶核苷酸,但辅因子结合在调节Kv电流中的作用仍不清楚。我们发现重组大鼠Kvβ1.3结合NADPH(K(d)=1.8±0.02微摩尔)和NADP(+)(K(d)=5.5±0.9微摩尔)。酪氨酸307和精氨酸316位点特异性修饰降低了NADPH结合;而K(d)NADPH不受R241L突变影响。转染Kv1.5 cDNA的COS-7细胞表现出非失活电流。与Kvβ1.3共转染加速了Kv激活和失活,并在激活的电压依赖性上诱导了超极化偏移。Kvβ介导的Kv电流失活被Y307F和R316E突变阻止,但不被R241L取代阻止。此外,R316E突变削弱了Kvα-β相互作用。当膜片钳吸管中加入过量NADPH时,Kvβ:R316E对Kv电流的失活得以恢复。这些观察结果表明,NADPH结合对于Kvα和β亚基之间的最佳相互作用以及Kvβ诱导的Kv电流失活至关重要。