Suppr超能文献

离子通道记录的统计特性。第一部分:与宏观电流的关系。

Statistical properties of ion channel records. Part I: relationship to the macroscopic current.

作者信息

Nekouzadeh Ali, Rudy Yoram

机构信息

Cardiac Bioelectricity and Arrhythmia Center, Washington University in St. Louis, 290 Whitaker Hall, Campus Box 1097, One Brooking Drive, St. Louis, MO 63130-4899, USA.

出版信息

Math Biosci. 2007 Nov;210(1):291-314. doi: 10.1016/j.mbs.2007.04.004. Epub 2007 May 4.

Abstract

Macroscopic ion channel current can be derived by summation of the stochastic records of individual channel currents. In this paper, we present two probability density functions of single channel records that can uniquely determine the macroscopic current regardless of other statistical properties of records or the stochastic model of channel gating (presented often with stationary Markov models). We show that H(t), probability density function of channel opening events (introduced explicitly in this paper), and D(t), probability density function of the open duration (sometimes has named dwell time distribution as well), determine the normalized macroscopic current, G(t), through G(t) = P(t) - H(t) * Q(t) where P(t) is the cumulative density function of H(t), Q(t) is the cumulative density function of D(t), * is the symbol of convolution integral and G(t) is the macroscopic current divided by the amplitude of single channel current and the number of single channel sweeps. Compared to other equations for the macroscopic current, here the macroscopic current is expressed only in terms of the statistical properties of single channel current and not the stochastic model of ion channel gating or a conditioned form of macroscopic current. Single channel currents of an inactivating BK channel were used to validate this relationship experimentally too. In this paper, we used median filters as they can remove the unwanted noise without smoothing the transitions between open and closed states (compare to low pass filters). This filtering leads to more accurate measurement of transition times and less amount of missed events.

摘要

宏观离子通道电流可通过对单个通道电流的随机记录进行求和得到。在本文中,我们给出了单通道记录的两个概率密度函数,它们能够唯一地确定宏观电流,而无需考虑记录的其他统计特性或通道门控的随机模型(通常用平稳马尔可夫模型表示)。我们表明,通道开放事件的概率密度函数H(t)(本文中明确引入)和开放持续时间的概率密度函数D(t)(有时也称为驻留时间分布),通过G(t) = P(t) - H(t) * Q(t)来确定归一化宏观电流G(t),其中P(t)是H(t)的累积密度函数,Q(t)是D(t)的累积密度函数,*是卷积积分符号,G(t)是宏观电流除以单通道电流幅度和单通道扫描次数。与其他宏观电流方程相比,这里宏观电流仅根据单通道电流的统计特性来表示,而不是离子通道门控的随机模型或宏观电流的条件形式。失活型BK通道的单通道电流也被用于通过实验验证这种关系。在本文中,我们使用中值滤波器,因为它们可以去除不需要的噪声,而不会平滑开放和关闭状态之间的转换(与低通滤波器相比)。这种滤波导致更准确地测量转换时间,并且错过事件的数量更少。

相似文献

5
Position-dependent stochastic diffusion model of ion channel gating.离子通道门控的位置依赖性随机扩散模型
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Dec;78(6 Pt 1):061915. doi: 10.1103/PhysRevE.78.061915. Epub 2008 Dec 17.
9
Stochastic behavior of a many-channel membrane system.多通道膜系统的随机行为。
Biophys J. 1985 Feb;47(2 Pt 1):129-37. doi: 10.1016/s0006-3495(85)83886-8.

引用本文的文献

5
Modeling subunit cooperativity in opening of tetrameric ion channels.四聚体离子通道开放过程中亚基协同性的建模
Biophys J. 2008 Oct;95(7):3510-20. doi: 10.1529/biophysj.108.136721. Epub 2008 Jul 11.

本文引用的文献

8
Estimating kinetic constants from single channel data.从单通道数据估算动力学常数。
Biophys J. 1983 Aug;43(2):207-23. doi: 10.1016/S0006-3495(83)84341-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验