Suppr超能文献

用于纵向生物标志物和复发事件的参数化潜在类别联合模型

Parametric latent class joint model for a longitudinal biomarker and recurrent events.

作者信息

Han Jun, Slate Elizabeth H, Peña Edsel A

机构信息

Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA.

出版信息

Stat Med. 2007 Dec 20;26(29):5285-302. doi: 10.1002/sim.2915.

Abstract

A joint model for a longitudinal biomarker and recurrent events is proposed. This general model accommodates the effects of covariates on the biomarker and event processes, the effects of accumulating event occurrences, and effects caused by interventions after each event occurrence. Association between the biomarker and recurrent event processes is captured through a latent class structure, which also serves to handle an underlying heterogeneous population. We use the EM algorithm for maximum likelihood estimation of the model parameters and a penalized likelihood measure to determine the number of latent classes. This joint model is validated by simulation and illustrated with a data set from epileptic seizure study.

摘要

提出了一种用于纵向生物标志物和复发事件的联合模型。这个通用模型考虑了协变量对生物标志物和事件过程的影响、累积事件发生的影响以及每次事件发生后干预措施所产生的影响。生物标志物和复发事件过程之间的关联通过一个潜在类别结构来捕捉,该结构也用于处理潜在的异质人群。我们使用期望最大化(EM)算法对模型参数进行最大似然估计,并使用惩罚似然度量来确定潜在类别的数量。这个联合模型通过模拟进行了验证,并以癫痫发作研究的数据集为例进行了说明。

相似文献

1
Parametric latent class joint model for a longitudinal biomarker and recurrent events.
Stat Med. 2007 Dec 20;26(29):5285-302. doi: 10.1002/sim.2915.
2
Joint partially linear model for longitudinal data with informative drop-outs.
Biometrics. 2017 Mar;73(1):72-82. doi: 10.1111/biom.12566. Epub 2016 Aug 1.
3
Joint analysis of left-censored longitudinal biomarker and binary outcome via latent class modeling.
Stat Med. 2018 Jun 15;37(13):2162-2173. doi: 10.1002/sim.7642. Epub 2018 Apr 2.
4
Joint analysis of time-to-event and multiple binary indicators of latent classes.
Biometrics. 2004 Mar;60(1):85-92. doi: 10.1111/j.0006-341X.2004.00141.x.
5
Partly conditional survival models for longitudinal data.
Biometrics. 2005 Jun;61(2):379-91. doi: 10.1111/j.1541-0420.2005.00323.x.
7
Joint modeling of survival and longitudinal data: likelihood approach revisited.
Biometrics. 2006 Dec;62(4):1037-43. doi: 10.1111/j.1541-0420.2006.00570.x.
9
Classification of longitudinal data through a semiparametric mixed-effects model based on lasso-type estimators.
Biometrics. 2015 Jun;71(2):333-43. doi: 10.1111/biom.12280. Epub 2015 Jan 30.
10
Shared frailty models for recurrent events and a terminal event.
Biometrics. 2004 Sep;60(3):747-56. doi: 10.1111/j.0006-341X.2004.00225.x.

引用本文的文献

1
Clustering of recurrent events data.
J Appl Stat. 2025 Jan 28;52(11):2031-2059. doi: 10.1080/02664763.2025.2452966. eCollection 2025.
2
Analysis of Recurrent Times-to-Clinical Malaria Episodes and Parasitemia: A Joint Modeling Approach Applied to a Cohort Data.
Front Epidemiol. 2022 Jul 8;2:924783. doi: 10.3389/fepid.2022.924783. eCollection 2022.
3
Semiparametric Latent Class Analysis of Recurrent Event Data.
J R Stat Soc Series B Stat Methodol. 2022 Sep;84(4):1175-1197. doi: 10.1111/rssb.12499. Epub 2022 Apr 14.
4
Dynamic prediction using joint models of longitudinal and recurrent event data: A Bayesian perspective.
Biostat Epidemiol. 2021;5(2):250-266. doi: 10.1080/24709360.2019.1693198. Epub 2019 Nov 22.
5
A Comparative Study of Different Joint Modeling Approaches for HIV/AIDS Patients in Southern Iran.
Iran J Public Health. 2020 Sep;49(9):1776-1786. doi: 10.18502/ijph.v49i9.4099.
6
Joint analysis of recurrence and termination: A Bayesian latent class approach.
Stat Methods Med Res. 2021 Feb;30(2):508-522. doi: 10.1177/0962280220962522. Epub 2020 Oct 13.
9
Regression analysis of longitudinal data with outcome-dependent sampling and informative censoring.
Scand Stat Theory Appl. 2019 Sep;46(3):831-847. doi: 10.1111/sjos.12373. Epub 2018 Dec 26.

本文引用的文献

1
Semiparametric Inference for a General Class of Models for Recurrent Events.
J Stat Plan Inference. 2007 Jun 1;137(6):1727-1747. doi: 10.1016/j.jspi.2006.05.004.
3
Modelling intervention effects after cancer relapses.
Stat Med. 2005 Dec 30;24(24):3959-75. doi: 10.1002/sim.2394.
4
Latent pattern mixture models for informative intermittent missing data in longitudinal studies.
Biometrics. 2004 Jun;60(2):295-305. doi: 10.1111/j.0006-341X.2004.00173.x.
5
Joint modelling of longitudinal measurements and event time data.
Biostatistics. 2000 Dec;1(4):465-80. doi: 10.1093/biostatistics/1.4.465.
6
Biomarkers and surrogate endpoints: preferred definitions and conceptual framework.
Clin Pharmacol Ther. 2001 Mar;69(3):89-95. doi: 10.1067/mcp.2001.113989.
7
Estimating degradation by a Wiener diffusion process subject to measurement error.
Lifetime Data Anal. 1995;1(3):307-19. doi: 10.1007/BF00985762.
10
Simultaneously modelling censored survival data and repeatedly measured covariates: a Gibbs sampling approach.
Stat Med. 1996 Aug 15;15(15):1663-85. doi: 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验