Suppr超能文献

基因组表达通路分析工具——在基因组、蛋白质组和代谢背景下对微阵列基因表达数据进行分析和可视化。

Genome Expression Pathway Analysis Tool--analysis and visualization of microarray gene expression data under genomic, proteomic and metabolic context.

作者信息

Weniger Markus, Engelmann Julia C, Schultz Jörg

机构信息

Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.

出版信息

BMC Bioinformatics. 2007 Jun 2;8:179. doi: 10.1186/1471-2105-8-179.

Abstract

BACKGROUND

Regulation of gene expression is relevant to many areas of biology and medicine, in the study of treatments, diseases, and developmental stages. Microarrays can be used to measure the expression level of thousands of mRNAs at the same time, allowing insight into or comparison of different cellular conditions. The data derived out of microarray experiments is highly dimensional and often noisy, and interpretation of the results can get intricate. Although programs for the statistical analysis of microarray data exist, most of them lack an integration of analysis results and biological interpretation.

RESULTS

We have developed GEPAT, Genome Expression Pathway Analysis Tool, offering an analysis of gene expression data under genomic, proteomic and metabolic context. We provide an integration of statistical methods for data import and data analysis together with a biological interpretation for subsets of probes or single probes on the chip. GEPAT imports various types of oligonucleotide and cDNA array data formats. Different normalization methods can be applied to the data, afterwards data annotation is performed. After import, GEPAT offers various statistical data analysis methods, as hierarchical, k-means and PCA clustering, a linear model based t-test or chromosomal profile comparison. The results of the analysis can be interpreted by enrichment of biological terms, pathway analysis or interaction networks. Different biological databases are included, to give various information for each probe on the chip. GEPAT offers no linear work flow, but allows the usage of any subset of probes and samples as a start for a new data analysis. GEPAT relies on established data analysis packages, offers a modular approach for an easy extension, and can be run on a computer grid to allow a large number of users. It is freely available under the LGPL open source license for academic and commercial users at http://gepat.sourceforge.net.

CONCLUSION

GEPAT is a modular, scalable and professional-grade software integrating analysis and interpretation of microarray gene expression data. An installation available for academic users can be found at http://gepat.bioapps.biozentrum.uni-wuerzburg.de.

摘要

背景

基因表达调控与生物学和医学的许多领域相关,涉及治疗、疾病和发育阶段的研究。微阵列可用于同时测量数千种mRNA的表达水平,从而深入了解或比较不同的细胞状态。微阵列实验得出的数据具有高维度且往往存在噪声,结果的解释可能会很复杂。尽管存在用于微阵列数据统计分析的程序,但其中大多数缺乏分析结果与生物学解释的整合。

结果

我们开发了GEPAT(基因组表达通路分析工具),可在基因组、蛋白质组和代谢背景下对基因表达数据进行分析。我们将数据导入和数据分析的统计方法与芯片上探针子集或单个探针的生物学解释相结合。GEPAT可导入各种类型的寡核苷酸和cDNA阵列数据格式。可对数据应用不同的标准化方法,随后进行数据注释。导入后,GEPAT提供各种统计数据分析方法,如层次聚类、k均值聚类和主成分分析聚类、基于线性模型的t检验或染色体图谱比较。分析结果可通过生物学术语富集、通路分析或相互作用网络进行解释。包含不同的生物学数据库,可为芯片上的每个探针提供各种信息。GEPAT不提供线性工作流程,但允许使用任何探针和样本子集作为新数据分析的起点。GEPAT依赖于成熟的数据分析软件包,提供模块化方法以便于扩展,并且可以在计算机网格上运行以允许大量用户使用。它在LGPL开源许可下免费提供给学术和商业用户,网址为http://gepat.sourceforge.net。

结论

GEPAT是一款模块化、可扩展的专业级软件,集成了微阵列基因表达数据的分析和解释。学术用户可在http://gepat.bioapps.biozentrum.uni-wuerzburg.de找到可用的安装程序。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a6/1896182/3a74a53fa8c7/1471-2105-8-179-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验