Suppr超能文献

单蛋白单体的力钳光谱揭示了I27和泛素各自的解折叠和折叠途径。

Force-clamp spectroscopy of single-protein monomers reveals the individual unfolding and folding pathways of I27 and ubiquitin.

作者信息

Garcia-Manyes Sergi, Brujić Jasna, Badilla Carmen L, Fernández Julio M

机构信息

Department of Biological Sciences, Columbia University, New York, New York 10027, USA.

出版信息

Biophys J. 2007 Oct 1;93(7):2436-46. doi: 10.1529/biophysj.107.104422. Epub 2007 Jun 1.

Abstract

Single-protein force experiments have relied on a molecular fingerprint based on tethering multiple single-protein domains in a polyprotein chain. However, correlations between these domains remain an issue in interpreting force spectroscopy data, particularly during protein folding. Here we first show that force-clamp spectroscopy is a sensitive technique that provides a molecular fingerprint based on the unfolding step size of four single-monomer proteins. We then measure the force-dependent unfolding rate kinetics of ubiquitin and I27 monomers and find a good agreement with the data obtained for the respective polyproteins over a wide range of forces, in support of the Markovian hypothesis. Moreover, with a large statistical ensemble at a single force, we show that ubiquitin monomers also exhibit a broad distribution of unfolding times as a signature of disorder in the folded protein landscape. Furthermore, we readily capture the folding trajectories of monomers that exhibit the same stages in folding observed for polyproteins, thus eliminating the possibility of entropic masking by other unfolded modules in the chain or domain-domain interactions. On average, the time to reach the I27 folded length increases with increasing quenching force at a rate similar to that of the polyproteins. Force-clamp spectroscopy at the single-monomer level reproduces the kinetics of unfolding and refolding measured using polyproteins, which proves that there is no mechanical effect of tethering proteins to one another in the case of ubiquitin and I27.

摘要

单蛋白力实验依赖于一种分子指纹,该指纹基于在多蛋白链中连接多个单蛋白结构域。然而,在解释力谱数据时,尤其是在蛋白质折叠过程中,这些结构域之间的相关性仍然是一个问题。在这里,我们首先表明力钳光谱是一种灵敏的技术,它基于四种单聚体蛋白的解折叠步长提供分子指纹。然后,我们测量了泛素和I27单体的力依赖解折叠速率动力学,发现在很宽的力范围内,与相应多蛋白获得的数据有很好的一致性,这支持了马尔可夫假设。此外,在单一力下有大量统计样本时,我们表明泛素单体也表现出解折叠时间的广泛分布,作为折叠蛋白构象中无序的特征。此外,我们很容易捕捉到单体的折叠轨迹,这些单体在折叠过程中表现出与多蛋白相同的阶段,从而消除了链中其他未折叠模块或结构域间相互作用导致熵掩盖的可能性。平均而言,达到I27折叠长度的时间随着淬灭力的增加而增加,其速率与多蛋白相似。单聚体水平的力钳光谱再现了使用多蛋白测量的解折叠和再折叠动力学,这证明在泛素和I27的情况下,将蛋白相互连接没有机械效应。

相似文献

1
Force-clamp spectroscopy of single-protein monomers reveals the individual unfolding and folding pathways of I27 and ubiquitin.
Biophys J. 2007 Oct 1;93(7):2436-46. doi: 10.1529/biophysj.107.104422. Epub 2007 Jun 1.
2
Dwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy.
Biophys J. 2007 Apr 15;92(8):2896-903. doi: 10.1529/biophysj.106.099481. Epub 2007 Jan 26.
3
Direct observation of markovian behavior of the mechanical unfolding of individual proteins.
Biophys J. 2008 Jul;95(2):782-8. doi: 10.1529/biophysj.107.128298. Epub 2008 Mar 28.
4
The unfolding kinetics of ubiquitin captured with single-molecule force-clamp techniques.
Proc Natl Acad Sci U S A. 2004 May 11;101(19):7299-304. doi: 10.1073/pnas.0400033101. Epub 2004 Apr 27.
5
6
Biophysical investigations of engineered polyproteins: implications for force data.
Biophys J. 2005 Mar;88(3):2022-9. doi: 10.1529/biophysj.104.053744. Epub 2004 Dec 21.
8
Frequency modulation atomic force microscopy reveals individual intermediates associated with each unfolded I27 titin domain.
Biophys J. 2006 Jan 15;90(2):640-7. doi: 10.1529/biophysj.105.066571. Epub 2005 Oct 28.
9
Folding and unfolding of gammaTIM monomers and dimers.
Biophys J. 2007 Oct 1;93(7):2457-71. doi: 10.1529/biophysj.107.108068. Epub 2007 Jun 1.

引用本文的文献

1
Structural Basis of High-Precision Protein Ligation and Its Application.
J Am Chem Soc. 2025 Jan 15;147(2):1604-1611. doi: 10.1021/jacs.4c10689. Epub 2025 Jan 2.
2
Structural anisotropy results in mechano-directional transport of proteins across nuclear pores.
Nat Phys. 2024;20(7):1180-1193. doi: 10.1038/s41567-024-02438-8. Epub 2024 May 13.
3
Nonexponential kinetics captured in sequential unfolding of polyproteins over a range of loads.
Curr Res Struct Biol. 2022 Apr 28;4:106-117. doi: 10.1016/j.crstbi.2022.04.003. eCollection 2022.
4
Molecular Fluctuations as a Ruler of Force-Induced Protein Conformations.
Nano Lett. 2021 Apr 14;21(7):2953-2961. doi: 10.1021/acs.nanolett.1c00051. Epub 2021 Mar 25.
5
Next Generation Methods for Single-Molecule Force Spectroscopy on Polyproteins and Receptor-Ligand Complexes.
Front Mol Biosci. 2020 May 19;7:85. doi: 10.3389/fmolb.2020.00085. eCollection 2020.
6
FliI-FliJ molecular motor assists with unfolding in the type III secretion export apparatus.
Sci Rep. 2020 Apr 28;10(1):7127. doi: 10.1038/s41598-020-63330-y.
7
Enzymatic biosynthesis and immobilization of polyprotein verified at the single-molecule level.
Nat Commun. 2019 Jun 24;10(1):2775. doi: 10.1038/s41467-019-10696-x.
8
Conformational entropy of a single peptide controlled under force governs protease recognition and catalysis.
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):11525-11530. doi: 10.1073/pnas.1803872115. Epub 2018 Oct 19.
10
The force-dependent mechanism of DnaK-mediated mechanical folding.
Sci Adv. 2018 Feb 9;4(2):eaaq0243. doi: 10.1126/sciadv.aaq0243. eCollection 2018 Feb.

本文引用的文献

1
Cysteine engineering of polyproteins for single-molecule force spectroscopy.
Nat Protoc. 2006;1(1):80-4. doi: 10.1038/nprot.2006.12.
2
Fluctuations of primary ubiquitin folding intermediates in a force clamp.
J Struct Biol. 2007 Mar;157(3):557-69. doi: 10.1016/j.jsb.2006.11.005. Epub 2006 Nov 26.
3
Dwell-time distribution analysis of polyprotein unfolding using force-clamp spectroscopy.
Biophys J. 2007 Apr 15;92(8):2896-903. doi: 10.1529/biophysj.106.099481. Epub 2007 Jan 26.
4
Mechanical unfolding pathways of the enhanced yellow fluorescent protein revealed by single molecule force spectroscopy.
J Biol Chem. 2006 Dec 29;281(52):40010-4. doi: 10.1074/jbc.M609890200. Epub 2006 Nov 2.
5
Refolding upon force quench and pathways of mechanical and thermal unfolding of ubiquitin.
Biophys J. 2007 Jan 15;92(2):547-61. doi: 10.1529/biophysj.106.087684. Epub 2006 Oct 27.
6
Anisotropic deformation response of single protein molecules.
Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12724-8. doi: 10.1073/pnas.0602995103. Epub 2006 Aug 14.
7
Engineering proteins with novel mechanical properties by recombination of protein fragments.
Angew Chem Int Ed Engl. 2006 Aug 25;45(34):5633-8. doi: 10.1002/anie.200600382.
8
Protein folding in a force clamp.
J Chem Phys. 2006 May 21;124(19):194901. doi: 10.1063/1.2192768.
9
Effects of surface tethering on protein folding mechanisms.
Proc Natl Acad Sci U S A. 2006 May 30;103(22):8396-401. doi: 10.1073/pnas.0601210103. Epub 2006 May 18.
10
Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques.
Proc Natl Acad Sci U S A. 2006 May 9;103(19):7222-7. doi: 10.1073/pnas.0511035103. Epub 2006 Apr 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验