Picioreanu C, Kreft J U, Klausen M, Haagensen J A J, Tolker-Nielsen T, Molin S
Department Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC, Delft, The Netherlands.
Water Sci Technol. 2007;55(8-9):337-43. doi: 10.2166/wst.2007.275.
A computational model explaining formation of mushroom-like biofilm colonies is proposed in this study. The biofilm model combines for the first time cell growth with twitching motility in a three-dimensional individual-based approach. Model simulations describe the tendency of motile cells to form flat biofilms spreading out on the substratum, in contrast with the immotile variants that form only round colonies. These computational results are in good qualitative agreement with the experimental data obtained from Pseudomonas aeruginosa biofilms grown in flowcells. Simulations reveal that motile cells can possess a serious ecological advantage by becoming less affected by mass transfer limitations. Twitching motility alone appears to be insufficient to generate mushroom-like biofilm structures with caps on stalks. Rather, a substrate limitation-induced detachment of motile cells followed by reattachment could explain this intriguing effect leading to higher-level biofilm structure.
本研究提出了一个解释蘑菇状生物膜菌落形成的计算模型。该生物膜模型首次采用基于个体的三维方法,将细胞生长与颤动运动相结合。模型模拟描述了运动细胞形成在基质上扩散的扁平生物膜的趋势,这与仅形成圆形菌落的不运动变体形成对比。这些计算结果与从流动小室中生长的铜绿假单胞菌生物膜获得的实验数据在质量上高度一致。模拟结果表明,运动细胞受传质限制的影响较小,从而具有显著的生态优势。仅颤动运动似乎不足以产生带有茎上帽状物的蘑菇状生物膜结构。相反,底物限制导致运动细胞脱离,随后重新附着,这可以解释这种导致更高层次生物膜结构的有趣效应。