Suppr超能文献

介观能量最小化驱动铜绿假单胞菌生物膜形态及其基于细胞代谢的抗生素活性的分层。

Mesoscopic Energy Minimization Drives Pseudomonas aeruginosa Biofilm Morphologies and Consequent Stratification of Antibiotic Activity Based on Cell Metabolism.

机构信息

Complexity Institute, Nanyang Technological University, Singapore.

HEALTHTECH NTU, Interdisciplinary Graduate School, Nanyang Technological University, Singapore.

出版信息

Antimicrob Agents Chemother. 2018 Apr 26;62(5). doi: 10.1128/AAC.02544-17. Print 2018 May.

Abstract

Segregation of bacteria based on their metabolic activities in biofilms plays an important role in the development of antibiotic resistance. Mushroom-shaped biofilm structures, which are reported for many bacteria, exhibit topographically varying levels of multiple drug resistance from the cap of the mushroom to its stalk. Understanding the dynamics behind the formation of such structures can aid in design of drug delivery systems, antibiotics, or physical systems for removal of biofilms. We explored the development of metabolically heterogeneous biofilms using numerical models and laboratory knockout experiments on wild-type and chemotaxis-deficient mutants. We show that chemotactic processes dominate the transformation of slender and hemispherical structures into mushroom structures with a signature cap. Cellular Potts model simulation and experimental data provide evidence that accelerated movement of bacteria along the periphery of the biofilm, due to nutrient cues, results in the formation of mushroom structures and bacterial segregation. Multidrug resistance of bacteria is one of the most threatening dangers to public health. Understanding the mechanisms of the development of mushroom-shaped biofilms helps to identify the multidrug-resistant regions. We decoded the dynamics of the structural evolution of bacterial biofilms and the physics behind the formation of biofilm structures as well as the biological triggers that produce them. Combining gene knockout experiments with models showed that chemotactic motility is one of the main driving forces for the formation of stalks and caps. Our results provide physicists and biologists with a new perspective on biofilm removal and eradication strategies.

摘要

基于细菌在生物膜中的代谢活性进行分离,在抗生素耐药性的发展中起着重要作用。据报道,许多细菌都呈现出蘑菇状的生物膜结构,其从蘑菇帽到菌柄呈现出具有不同程度的多药耐药性。了解形成这种结构的动态机制有助于设计药物输送系统、抗生素或物理系统来去除生物膜。我们使用数值模型和针对野生型和趋化缺陷突变体的实验室敲除实验,探索了代谢异质生物膜的发展。我们表明,趋化作用过程主导着从细长和半球形结构向具有特征性帽的蘑菇状结构的转化。细胞 Potts 模型模拟和实验数据提供了证据,表明由于营养线索,细菌在生物膜边缘的加速运动导致了蘑菇状结构和细菌分离的形成。细菌的多药耐药性是对公众健康最具威胁的危险之一。了解蘑菇状生物膜形成的机制有助于识别多药耐药区域。我们解码了细菌生物膜结构演变的动力学以及生物膜结构形成的物理学原理,以及产生它们的生物学触发因素。将基因敲除实验与模型相结合表明,趋化运动是形成菌柄和菌帽的主要驱动力之一。我们的研究结果为物理学家和生物学家提供了一个新的视角,了解生物膜的去除和根除策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/73a8/5923133/c6fba648020e/zac0051871040001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验