Sayle Dean C, Feng Xiangdong, Ding Yong, Wang Zhong Lin, Sayle Thi X T
Deptartment of Materials and Applied Science, Defence College of Management and Technology, Cranfield University, Defence Academy of the United Kingdom, Shrivenham, Swindon SN6 8LA, UK.
J Am Chem Soc. 2007 Jun 27;129(25):7924-35. doi: 10.1021/ja070893w. Epub 2007 Jun 5.
We predict, from computer modeling and simulation in partnership with experiment, a general strategy for synthesizing spherical oxide nanocrystals via crystallization from melt. In particular we "simulate synthesis" to generate full atomistic models of undoped and Ti-doped CeO2 nanoparticles, nanorods, and nanoporous framework architectures. Our simulations demonstrate, in quantitative agreement with experiment [Science 2006, 312, 1504], that Ti (dopant) ions change the shape of CeO2 nanocrystals from polyhedral to spherical. We rationalize this morphological change by elucidating, at the atomistic level, the mechanism underpinning its synthesis. In particular, CeO2 nanocrystals can be synthesized via crystallization from melt: as a molten (undoped) CeO2 nanoparticle is cooled, nucleating seeds spontaneously evolve at the surface and express energetically stable [111] facets to minimize the energy. As crystallization proceeds, the [111] facets grow, thus facilitating a polyhedral shape. Conversely, when doped with Ti, a (predominantly) TiO2 shell encapsulates the inner CeO2 core. This shell inhibits the evolution of nucleating seeds at the surface thus rendering it amorphous during cooling. Accordingly, crystallization is forced to proceed via the evolution of a nucleating seed in the bulk CeO2 region of the nanoparticle, and as this seed grows, it remains surrounded by amorphous ions, which "wrap" around the core so that the energies for high-index facets are drastically reduced; these amorphous ions adopt a spherical shape to minimize the surface energy. Crystallization emanates radially from the nucleating seed, and because it is encapsulated by an amorphous shell, the crystallization front is not compelled to express energetically favorable surfaces. Accordingly, after the nanoparticle has crystallized it retains this spherical shape. A typical animation showing the crystallization (with atomistic detail) is available as Supporting Information. From this data we predict that spherical oxide nanocrystals can be synthesized via crystallization from melt in general by suppressing nucleating seed evolution at the surface thus forcing the nucleating seed to spontaneously evolve in the bulk. Nanospheres can, similar to zeolitic classifications, constitute Secondary Building Units (SBUs) and can aggregate to form nanorods and nanoporous framework architectures. Here we have attempted to simulate this process to generate models for CeO2 and Ti-doped CeO2 nanorods and framework architectures. In particular, we predict that Ti doping will "smooth" the surfaces: hexagonal prism shaped CeO2 nanorods with [111] and [100] surfaces become cylindrical, and framework architectures change from facetted pores and channels with well-defined [111] and [100] surfaces to "smooth" pores and channels (expressing both concave and convex curvatures). Such structures are difficult to characterize using, for example, Miller indices; rather we suggest that these new structural materials may be better described using minimal surfaces.
通过与实验合作进行计算机建模和模拟,我们预测了一种通过熔体结晶合成球形氧化物纳米晶体的通用策略。特别是,我们进行“模拟合成”以生成未掺杂和钛掺杂的二氧化铈纳米颗粒、纳米棒和纳米多孔框架结构的完整原子模型。我们的模拟结果与实验[《科学》2006年,312卷,1504页]定量一致,表明钛(掺杂剂)离子会使二氧化铈纳米晶体的形状从多面体变为球形。我们通过在原子层面阐明其合成背后的机制,对这种形态变化进行了合理的解释。具体而言,二氧化铈纳米晶体可以通过熔体结晶来合成:当熔融的(未掺杂的)二氧化铈纳米颗粒冷却时,成核晶种会在表面自发形成,并呈现出能量稳定的[111]晶面以最小化能量。随着结晶过程的进行,[111]晶面生长,从而形成多面体形状。相反,当掺杂钛时,一个(主要是)二氧化钛壳层会包裹内部的二氧化铈核。这个壳层会抑制表面成核晶种的形成,从而使其在冷却过程中保持非晶态。因此,结晶被迫通过纳米颗粒本体二氧化铈区域中的一个成核晶种的演化来进行,并且随着这个晶种的生长,它会被非晶态离子包围,这些离子“包裹”在核周围,从而使高指数晶面的能量大幅降低;这些非晶态离子会采取球形以最小化表面能。结晶从成核晶种径向向外扩展,并且由于它被一个非晶态壳层包裹,结晶前沿不会被迫呈现出能量有利的表面。因此,在纳米颗粒结晶后,它会保留这种球形形状。作为支持信息,可获取一个展示结晶过程(具有原子细节)的典型动画。根据这些数据,我们预测,一般来说,通过抑制表面成核晶种的演化,从而迫使成核晶种在本体中自发演化,就可以通过熔体结晶合成球形氧化物纳米晶体。与沸石分类类似,纳米球可以构成二级结构单元(SBU),并且可以聚集形成纳米棒和纳米多孔框架结构。在这里,我们试图模拟这个过程以生成二氧化铈和钛掺杂的二氧化铈纳米棒及框架结构的模型。特别是,我们预测钛掺杂会使表面“平滑”:具有[111]和[100]表面的六方棱柱形二氧化铈纳米棒会变成圆柱形,并且框架结构会从具有明确[111]和[100]表面的多面孔隙和通道变为“平滑”的孔隙和通道(同时呈现凹面和凸面曲率)。使用例如米勒指数很难对这样的结构进行表征;相反,我们建议使用极小曲面来更好地描述这些新型结构材料。