Suppr超能文献

绘制纳米结构:通过在晶体学位置组装纳米构建块对纳米材料进行系统枚举。

Mapping nanostructure: a systematic enumeration of nanomaterials by assembling nanobuilding blocks at crystallographic positions.

作者信息

Sayle Dean C, Seal Sudipta, Wang Zhongwu, Mangili Benoît C, Price David W, Karakoti Ajay S, Kuchibhatla Satyanarayana V T N, Hao Quan, Möbus Günter, Xu Xiaojing, Sayle Thi X T

机构信息

Department of Applied Science, Security and Resilience Defence College of Management and Technology, Cranfield University, Defence Academy of the United Kingdom, Shrivenham SN6 8LA, UK.

出版信息

ACS Nano. 2008 Jun;2(6):1237-51. doi: 10.1021/nn800065g.

Abstract

Nanomaterials synthesized from nanobuilding blocks promise size-dependent properties, associated with individual nanoparticles, together with collective properties of ordered arrays. However, one cannot position nanoparticles at specific locations; rather innovative ways of coaxing these particles to self-assemble must be devised. Conversely, model nanoparticles can be placed in any desired position, which enables a systematic enumeration of nanostructure from model nanobuilding blocks. This is desirable because a list of chemically feasible hypothetical structures will help guide the design of strategies leading to their synthesis. Moreover, the models can help characterize nanostructure, calculate (predict) properties, or simulate processes. Here, we start to formulate and use a simulation strategy to generate atomistic models of nanomaterials, which can, potentially, be synthesized from nanobuilding block precursors. Clearly, this represents a formidable task because the number of ways nanoparticles can be arranged into a superlattice is infinite. Nevertheless, numerical tools are available to help build nanoparticle arrays in a systematic way. Here, we exploit the "rules of crystallography" and position nanoparticles, rather than atoms, at crystallographic sites. Specifically, we explore nanoparticle arrays with cubic, tetragonal, and hexagonal symmetries together with primitive, face centered cubic and body centered cubic nanoparticle "packing". We also explore binary nanoparticle superlattices. The resulting nanomaterials, spanning CeO(2), Ti-doped CeO(2), ZnO, ZnS, MgO, CaO, SrO, and BaO, comprise framework architectures, with cavities interconnected by channels traversing (zero), one, two and three dimensions. The final, fully atomistic models comprise three hierarchical levels of structural complexity: crystal structure, microstructure (i.e., grain boundaries, dislocations), and superlattice structure.

摘要

由纳米结构单元合成的纳米材料有望具备与单个纳米颗粒相关的尺寸依赖性特性,以及有序阵列的集体特性。然而,人们无法将纳米颗粒定位在特定位置;相反,必须设计出引导这些颗粒自组装的创新方法。相反,模型纳米颗粒可以放置在任何所需位置,这使得能够从模型纳米结构单元系统地枚举纳米结构。这是可取的,因为一份化学上可行的假设结构清单将有助于指导导致其合成的策略设计。此外,这些模型有助于表征纳米结构、计算(预测)特性或模拟过程。在这里,我们开始制定并使用一种模拟策略来生成纳米材料的原子模型,这些纳米材料有可能由纳米结构单元前体合成。显然,这是一项艰巨的任务,因为纳米颗粒排列成超晶格的方式数量是无限的。然而,可以使用数值工具来帮助以系统的方式构建纳米颗粒阵列。在这里,我们利用“晶体学规则”,将纳米颗粒而非原子放置在晶体学位置。具体而言,我们探索具有立方、四方和六方对称性以及原始、面心立方和体心立方纳米颗粒“堆积”的纳米颗粒阵列。我们还探索二元纳米颗粒超晶格。由此产生的纳米材料包括CeO(2)、Ti掺杂的CeO(2)、ZnO、ZnS、MgO、CaO、SrO和BaO,具有框架结构,其空腔通过贯穿(零)、一、二和三维的通道相互连接。最终的完全原子模型包括三个层次的结构复杂性:晶体结构、微观结构(即晶界、位错)和超晶格结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验