Majda Andrew J, Stechmann Samuel N, Khouider Boualem
Courant Institute of Mathematical Sciences and Center for Atmosphere and Ocean Sciences, New York University, New York, NY 10012, USA.
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):9919-24. doi: 10.1073/pnas.0703572104. Epub 2007 Jun 4.
The Madden-Julian Oscillation (MJO) is the dominant component of tropical intraseasonal variability, and a theory explaining its structure and successful numerical simulation remains a major challenge. A successful model for the MJO should have a propagation speed of 4-7 m/s predicted by theory; a wavenumber-2 or -3 structure for the planetary-scale, low-frequency envelope with distinct active and inactive phases of deep convection; an intermittent turbulent chaotic multiscale structure within the planetary envelope involving embedded westward- and eastward-propagating deep convection events; and qualitative features of the low-frequency envelope from the observational record regarding, e.g., its zonal flow structure and heating. Here, such an MJO analog is produced by using the recent multicloud model of Khouider and Majda in an appropriate intraseasonal parameter regime for flows above the equator so that rotation is ignored. Key features of the multicloud model are (i) systematic low-level moisture convergence with retained conservation of vertically integrated moist static energy, and (ii) the use of three cumulus cloud types (congestus, stratiform, and deep convective) together with their differing vertical heating structures. Besides all of the above structure in the MJO analog waves, there are accurate predictions of the phase speed from linear theory and transitions from weak, regular MJO analog waves to strong, multiscale MJO analog waves as climatological parameters vary. With all of this structure in a simplified context, these models should be useful for MJO predictability studies in a fashion akin to the Lorenz 96 model for the midlatitude atmosphere.
马登-朱利安振荡(MJO)是热带季节内变率的主要组成部分,而解释其结构并进行成功的数值模拟仍是一项重大挑战。一个成功的MJO模型应具有理论预测的4-7米/秒的传播速度;行星尺度低频包络具有2波数或3波数结构,伴有深对流明显的活跃和不活跃阶段;行星包络内存在间歇性湍流混沌多尺度结构,其中包含向西和向东传播的深对流事件;以及观测记录中低频包络的定性特征,例如其纬向流结构和加热情况。在此,通过在赤道上方气流的适当季节内参数区域使用Khouider和Majda最近的多云模型来生成这样一个MJO类似物,以便忽略旋转的影响。多云模型的关键特征包括:(i)系统的低层水汽辐合,同时保持垂直积分湿静能守恒;(ii)使用三种积云类型(浓积云、层状云和深对流云)及其不同的垂直加热结构。除了MJO类似波中的所有上述结构外,根据线性理论对相速度进行了准确预测,并且随着气候参数的变化,从弱的、规则的MJO类似波到强的、多尺度的MJO类似波发生了转变。在简化的背景下具备所有这些结构,这些模型应以类似于中纬度大气的洛伦兹96模型的方式,对MJO可预报性研究有用。