Rushley Stephanie S, Kim Daehyun, Adames Ángel F
Department of Atmospheric Sciences, University of Washington, Seattle, Washington.
Department of Climate and Space Science and Engineering, University of Michigan, Ann Arbor, Michigan.
J Clim. 2019 Feb;32(3):803-821. doi: 10.1175/JCLI-D-18-0437.1. Epub 2019 Jan 14.
This study investigates changes to the Madden-Julian Oscillation (MJO) in response to greenhouse-gas induced warming during the 21 century. Changes in the MJO's amplitude, phase speed, and zonal scale are examined in five Coupled Model Intercomparison Project Phase 5 (CMIP5) models that demonstrate superior MJO characteristics. Under warming, the CMIP5 models exhibit a robust increase in the spectral power of planetary-scale, intraseasonal, eastward-propagating (MJO) precipitation anomalies (~10.9 %K). The amplification of MJO variability is accompanied by an increase of the spectral power of the corresponding westward traveling waves at a similar rate. This suggests that enhanced MJO variability in a warmer climate is likely caused by enhanced background tropical precipitation variability, not by changes in the MJO's stability. All models examined show an increase in the MJO's phase speed (1.8 - 4.5 %K) and a decrease in the MJO's zonal wavenumber (1.0 - 3.8 %K). Using a linear moisture mode framework, this study tests the theory-predicted phase speed changes against the simulated phase speed changes. It is found that the MJO's acceleration in a warmer climate is a result of enhanced horizontal moisture advection by the steepening of the mean meridional moisture gradient and the decrease in zonal wavenumber, which is partially offset by the lengthening of the convective moisture adjustment timescale and the increase in gross dry stability. While the ability of the linear moisture mode framework to explain MJO phase speed changes is model dependent, the theory can accurately predict the phase speed changes in the model ensemble.
本研究调查了21世纪马登-朱利安振荡(MJO)对温室气体引起的变暖的响应变化。在五个展示出卓越MJO特征的耦合模式比较计划第5阶段(CMIP5)模式中,研究了MJO的振幅、相速度和纬向尺度的变化。在变暖情况下,CMIP5模式显示行星尺度、季节内、向东传播的(MJO)降水异常的谱功率显著增加(约10.9%K)。MJO变率的放大伴随着相应向西传播波的谱功率以相似速率增加。这表明在更温暖气候中MJO变率增强可能是由背景热带降水变率增强引起的,而非MJO稳定性的变化。所有被研究的模式都显示MJO的相速度增加(1.8 - 4.5%K)且MJO的纬向波数减小(1.0 - 3.8%K)。本研究使用线性水汽模式框架,将理论预测的相速度变化与模拟的相速度变化进行对比。研究发现,在更温暖气候中MJO的加速是平均经向水汽梯度变陡和纬向波数减小导致水平水汽平流增强的结果,这被对流水汽调整时间尺度的延长和总体干稳定性的增加部分抵消。虽然线性水汽模式框架解释MJO相速度变化的能力因模式而异,但该理论能准确预测模式集合中的相速度变化。