Herrmann Stefan, Stieber Juliane, Ludwig Andreas
Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany.
Pflugers Arch. 2007 Jul;454(4):517-22. doi: 10.1007/s00424-007-0224-4. Epub 2007 Feb 14.
Hyperpolarization-activated cation currents termed I (f/h) are observed in many neurons and cardiac cells. Four genes (HCN1-4) encode the channels underlying these currents. New insights into the pathophysiological significance of HCN channels have been gained recently from analyses of mice engineered to be deficient in HCN genes. Lack of individual subunits results in markedly different phenotypes. Disruption of HCN1 impairs motor learning but enhances spatial learning and memory. Deletion of HCN2 results in absence epilepsy, ataxia, and sinus node dysfunction. Mice lacking HCN4 die during embryonic development and develop no sinoatrial node-like action potentials. In the present review, we summarize the physiology and pathophysiology of HCN channel family members based primarily on information from the transgenic mouse models and on data from human patients carrying defects in HCN4 channels.
在许多神经元和心脏细胞中可观察到称为I(f/h)的超极化激活阳离子电流。四个基因(HCN1 - 4)编码构成这些电流的通道。最近,通过对经基因工程改造而缺乏HCN基因的小鼠进行分析,人们对HCN通道的病理生理意义有了新的认识。单个亚基的缺失会导致明显不同的表型。HCN1的缺失会损害运动学习,但会增强空间学习和记忆。HCN2的缺失会导致失神癫痫、共济失调和窦房结功能障碍。缺乏HCN4的小鼠在胚胎发育期间死亡,且不会产生类似窦房结的动作电位。在本综述中,我们主要基于来自转基因小鼠模型的信息以及携带HCN4通道缺陷的人类患者的数据,总结HCN通道家族成员的生理学和病理生理学。