Suppr超能文献

用于解决约束优化问题的多目标优化与混合进化算法

Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems.

作者信息

Wang Yong, Cai Zixing, Guo Guanqi, Zhou Yuren

机构信息

School of Information Science and Engineering, Central South University, Changsha 410083, China.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2007 Jun;37(3):560-75. doi: 10.1109/tsmcb.2006.886164.

Abstract

This paper presents a novel evolutionary algorithm (EA) for constrained optimization problems, i.e., the hybrid constrained optimization EA (HCOEA). This algorithm effectively combines multiobjective optimization with global and local search models. In performing the global search, a niching genetic algorithm based on tournament selection is proposed. Also, HCOEA has adopted a parallel local search operator that implements a clustering partition of the population and multiparent crossover to generate the offspring population. Then, nondominated individuals in the offspring population are used to replace the dominated individuals in the parent population. Meanwhile, the best infeasible individual replacement scheme is devised for the purpose of rapidly guiding the population toward the feasible region of the search space. During the evolutionary process, the global search model effectively promotes high population diversity, and the local search model remarkably accelerates the convergence speed. HCOEA is tested on 13 well-known benchmark functions, and the experimental results suggest that it is more robust and efficient than other state-of-the-art algorithms from the literature in terms of the selected performance metrics, such as the best, median, mean, and worst objective function values and the standard deviations.

摘要

本文提出了一种用于约束优化问题的新型进化算法(EA),即混合约束优化进化算法(HCOEA)。该算法有效地将多目标优化与全局和局部搜索模型相结合。在进行全局搜索时,提出了一种基于锦标赛选择的小生境遗传算法。此外,HCOEA采用了并行局部搜索算子,该算子对种群进行聚类划分并采用多亲交叉来生成子代种群。然后,子代种群中的非支配个体用于替换父代种群中的支配个体。同时,设计了最佳不可行个体替换方案,以便迅速引导种群朝着搜索空间的可行区域发展。在进化过程中,全局搜索模型有效地促进了高种群多样性,局部搜索模型显著加快了收敛速度。HCOEA在13个著名的基准函数上进行了测试,实验结果表明,在所选性能指标方面,如最佳、中位数、均值和最差目标函数值以及标准差,它比文献中其他最先进的算法更稳健、更高效。

相似文献

1
Multiobjective optimization and hybrid evolutionary algorithm to solve constrained optimization problems.
IEEE Trans Syst Man Cybern B Cybern. 2007 Jun;37(3):560-75. doi: 10.1109/tsmcb.2006.886164.
2
A dynamic hybrid framework for constrained evolutionary optimization.
IEEE Trans Syst Man Cybern B Cybern. 2012 Feb;42(1):203-17. doi: 10.1109/TSMCB.2011.2161467. Epub 2011 Aug 4.
3
Constrained Multiobjective Optimization Algorithm Based on Immune System Model.
IEEE Trans Cybern. 2016 Sep;46(9):2056-69. doi: 10.1109/TCYB.2015.2461651. Epub 2015 Aug 13.
4
Constrained multiobjective biogeography optimization algorithm.
ScientificWorldJournal. 2014;2014:232714. doi: 10.1155/2014/232714. Epub 2014 May 26.
5
An Opposition-Based Evolutionary Algorithm for Many-Objective Optimization with Adaptive Clustering Mechanism.
Comput Intell Neurosci. 2019 May 2;2019:5126239. doi: 10.1155/2019/5126239. eCollection 2019.
7
Cultural-based multiobjective particle swarm optimization.
IEEE Trans Syst Man Cybern B Cybern. 2011 Apr;41(2):553-67. doi: 10.1109/TSMCB.2010.2068046. Epub 2010 Sep 9.
8
Accelerated Simplified Swarm Optimization with Exploitation Search Scheme for Data Clustering.
PLoS One. 2015 Sep 8;10(9):e0137246. doi: 10.1371/journal.pone.0137246. eCollection 2015.
9
Evolutionary Dynamic Multiobjective Optimization Via Kalman Filter Prediction.
IEEE Trans Cybern. 2016 Dec;46(12):2862-2873. doi: 10.1109/TCYB.2015.2490738. Epub 2015 Dec 29.
10
PSO-based multiobjective optimization with dynamic population size and adaptive local archives.
IEEE Trans Syst Man Cybern B Cybern. 2008 Oct;38(5):1270-93. doi: 10.1109/TSMCB.2008.925757.

引用本文的文献

1
An improved sparrow search algorithm with multi-strategy integration.
Sci Rep. 2025 Jan 26;15(1):3314. doi: 10.1038/s41598-025-86298-z.
2
A particle swarm optimization algorithm based on an improved deb criterion for constrained optimization problems.
PeerJ Comput Sci. 2022 Dec 12;8:e1178. doi: 10.7717/peerj-cs.1178. eCollection 2022.
4
Energy Management Expert Assistant, a New Concept.
Sensors (Basel). 2021 Sep 2;21(17):5915. doi: 10.3390/s21175915.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验