Wang Yong, Cai Zixing, Guo Guanqi, Zhou Yuren
School of Information Science and Engineering, Central South University, Changsha 410083, China.
IEEE Trans Syst Man Cybern B Cybern. 2007 Jun;37(3):560-75. doi: 10.1109/tsmcb.2006.886164.
This paper presents a novel evolutionary algorithm (EA) for constrained optimization problems, i.e., the hybrid constrained optimization EA (HCOEA). This algorithm effectively combines multiobjective optimization with global and local search models. In performing the global search, a niching genetic algorithm based on tournament selection is proposed. Also, HCOEA has adopted a parallel local search operator that implements a clustering partition of the population and multiparent crossover to generate the offspring population. Then, nondominated individuals in the offspring population are used to replace the dominated individuals in the parent population. Meanwhile, the best infeasible individual replacement scheme is devised for the purpose of rapidly guiding the population toward the feasible region of the search space. During the evolutionary process, the global search model effectively promotes high population diversity, and the local search model remarkably accelerates the convergence speed. HCOEA is tested on 13 well-known benchmark functions, and the experimental results suggest that it is more robust and efficient than other state-of-the-art algorithms from the literature in terms of the selected performance metrics, such as the best, median, mean, and worst objective function values and the standard deviations.
本文提出了一种用于约束优化问题的新型进化算法(EA),即混合约束优化进化算法(HCOEA)。该算法有效地将多目标优化与全局和局部搜索模型相结合。在进行全局搜索时,提出了一种基于锦标赛选择的小生境遗传算法。此外,HCOEA采用了并行局部搜索算子,该算子对种群进行聚类划分并采用多亲交叉来生成子代种群。然后,子代种群中的非支配个体用于替换父代种群中的支配个体。同时,设计了最佳不可行个体替换方案,以便迅速引导种群朝着搜索空间的可行区域发展。在进化过程中,全局搜索模型有效地促进了高种群多样性,局部搜索模型显著加快了收敛速度。HCOEA在13个著名的基准函数上进行了测试,实验结果表明,在所选性能指标方面,如最佳、中位数、均值和最差目标函数值以及标准差,它比文献中其他最先进的算法更稳健、更高效。