Suppr超能文献

MSNovo:一种通过串联质谱进行肽段从头测序的动态规划算法。

MSNovo: a dynamic programming algorithm for de novo peptide sequencing via tandem mass spectrometry.

作者信息

Mo Lijuan, Dutta Debojyoti, Wan Yunhu, Chen Ting

机构信息

Department of Biology, Department of Mathematics, University of Southern California, Los Angeles, California 90089, USA.

出版信息

Anal Chem. 2007 Jul 1;79(13):4870-8. doi: 10.1021/ac070039n. Epub 2007 Jun 6.

Abstract

Tandem mass spectrometry (MS/MS) has become the experimental method of choice for high-throughput proteomics-based biological discovery. The two primary ways of analyzing MS/MS data are database search and de novo sequencing. In this paper, we present a new approach to peptide de novo sequencing, called MSNovo, which has the following advanced features. (1) It works on data generated from both LCQ and LTQ mass spectrometers and interprets singly, doubly, and triply charged ions. (2) It integrates a new probabilistic scoring function with a mass array-based dynamic programming algorithm. The simplicity of the scoring function, with only 6-10 parameters to be trained, avoids the problem of overfitting and allows MSNovo to be adopted for other machines and data sets easily. The mass array data structure explicitly encodes all possible peptides and allows the dynamic programming algorithm to find the best peptide. (3) Compared to existing programs, MSNovo predicts peptides as well as sequence tags with a higher accuracy, which is important for those applications that search protein databases using the de novo sequencing results. More specifically, we show that MSNovo outperforms other programs on various ESI ion trap data. We also show that for high-resolution data the performance of MSNovo improves significantly. Supporting Information, executable files and data sets can be found at http://msms.usc.edu/supplementary/msnovo.

摘要

串联质谱法(MS/MS)已成为基于高通量蛋白质组学的生物学发现的首选实验方法。分析MS/MS数据的两种主要方法是数据库搜索和从头测序。在本文中,我们提出了一种新的肽从头测序方法,称为MSNovo,它具有以下先进特性。(1)它适用于从LCQ和LTQ质谱仪生成的数据,并可解释单电荷、双电荷和三电荷离子。(2)它将一种新的概率评分函数与基于质量阵列的动态规划算法相结合。评分函数很简单,只需训练6到10个参数,避免了过拟合问题,并使MSNovo能够轻松应用于其他仪器和数据集。质量阵列数据结构明确编码了所有可能的肽,并允许动态规划算法找到最佳肽。(3)与现有程序相比,MSNovo预测肽和序列标签的准确性更高,这对于那些使用从头测序结果搜索蛋白质数据库的应用程序很重要。更具体地说,我们表明MSNovo在各种电喷雾离子阱数据上优于其他程序。我们还表明,对于高分辨率数据,MSNovo的性能有显著提高。支持信息、可执行文件和数据集可在http://msms.usc.edu/supplementary/msnovo上找到。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验