Gómez Manuel J, Pazos Florencio, Guijarro Francisco J, de Lorenzo Víctor, Valencia Alfonso
Centro de Astrobiología (INTA-CSIC), Ctra. Torrejón Ajalvir, Km 4. Torrejón de Ardoz, Madrid, Spain.
Mol Syst Biol. 2007;3:114. doi: 10.1038/msb4100156. Epub 2007 Jun 5.
The production of new chemicals for industrial or therapeutic applications exceeds our ability to generate experimental data on their biological fate once they are released into the environment. Typically, mixtures of organic pollutants are freed into a variety of sites inhabited by diverse microorganisms, which structure complex multispecies metabolic networks. A machine learning approach has been instrumental to expose a correlation between the frequency of 149 atomic triads (chemotopes) common in organo-chemical compounds and the global capacity of microorganisms to metabolise them. Depending on the type of environmental fate defined, the system can correctly predict the biodegradative outcome for 73-87% of compounds. This system is available to the community as a web server (http://www.pdg.cnb.uam.es/BDPSERVER). The application of this predictive tool to chemical species released into the environment provides an early instrument for tentatively classifying the compounds as biodegradable or recalcitrant. Automated surveys of lists of industrial chemicals currently employed in large quantities revealed that herbicides are the group of functional molecules more difficult to recycle into the biosphere through the inclusive microbial metabolism.
用于工业或治疗用途的新化学品的生产速度,超过了我们在这些化学品释放到环境后生成其生物归宿实验数据的能力。通常,有机污染物混合物会被排放到各种有不同微生物栖息的场所,这些微生物构成了复杂的多物种代谢网络。一种机器学习方法有助于揭示有机化合物中常见的149种原子三联体(化学拓扑结构)的出现频率与微生物代谢它们的整体能力之间的相关性。根据所定义的环境归宿类型,该系统能够正确预测73%-87%的化合物的生物降解结果。该系统作为一个网络服务器(http://www.pdg.cnb.uam.es/BDPSERVER)供大家使用。将这种预测工具应用于释放到环境中的化学物质,为初步将这些化合物分类为可生物降解或难降解提供了一种早期手段。对目前大量使用的工业化学品清单进行的自动调查显示,除草剂是最难通过包容性微生物代谢再循环进入生物圈的功能分子类别。