Suppr超能文献

元音和元音序列发音过程中声道模式的时间依赖性。

Time dependence of vocal tract modes during production of vowels and vowel sequences.

作者信息

Story Brad H

机构信息

Speech Acoustics Laboratory, Department of Speech, Language, and Hearing Sciences, University of Arizona, Tucson, Arizona 85721, USA.

出版信息

J Acoust Soc Am. 2007 Jun;121(6):3770-89. doi: 10.1121/1.2730621.

Abstract

Vocal tract shaping patterns based on articulatory fleshpoint data from four speakers in the University of Wisconsin x-ray microbeam (XRMB) database [J. Westbury, UW-Madison, (1994)] were determined with a principal component analysis (PCA). Midsagittal cross-distance functions representative of approximately the front 6 cm of the oral cavity for each of 11 vowels and vowel-vowel (VV) sequences were obtained from the pellet positions and the hard palate profile for the four speakers. A PCA was independently performed on each speaker's set of cross-distance functions representing static vowels only, and again with time-dependent cross-distance functions representing vowels and VV sequences. In all cases, results indicated that the first two orthogonal components (referred to as modes) accounted for more than 97% of the variance in each speaker's set of cross-distance functions. In addition, the shape of each mode was shown to be similar across the speakers suggesting that the modes represent common patterns of vocal tract deformation. Plots of the resulting time-dependent coefficient records showed that the four speakers activated each mode similarly during production of the vowel sequences. Finally, a procedure was described for using the time-dependent mode coefficients obtained from the XRMB data as input for an area function model of the vocal tract.

摘要

基于威斯康星大学X射线微束(XRMB)数据库[J.韦斯特伯里,威斯康星大学麦迪逊分校,(1994年)]中四位说话者的发音肉点数据,通过主成分分析(PCA)确定声道塑造模式。从四位说话者的颗粒位置和硬腭轮廓中获得了代表11个元音和元音-元音(VV)序列中每个元音口腔前部约6厘米的矢状中交叉距离函数。对每位说话者仅代表静态元音的交叉距离函数集独立进行主成分分析,然后再次对代表元音和VV序列的随时间变化的交叉距离函数进行主成分分析。在所有情况下,结果表明前两个正交分量(称为模式)占每位说话者交叉距离函数集方差的97%以上。此外,各模式的形状在不同说话者之间显示出相似性,这表明这些模式代表了声道变形的常见模式。所得随时间变化的系数记录图表明,四位说话者在元音序列发音过程中以相似方式激活每个模式。最后,描述了一种程序,用于将从XRMB数据中获得的随时间变化的模式系数用作声道面积函数模型的输入。

相似文献

1
Time dependence of vocal tract modes during production of vowels and vowel sequences.
J Acoust Soc Am. 2007 Jun;121(6):3770-89. doi: 10.1121/1.2730621.
2
Synergistic modes of vocal tract articulation for American English vowels.
J Acoust Soc Am. 2005 Dec;118(6):3834-59. doi: 10.1121/1.2118367.
3
The relationship of vocal tract shape to three voice qualities.
J Acoust Soc Am. 2001 Apr;109(4):1651-67. doi: 10.1121/1.1352085.
5
Vocal tract normalization for midsagittal articulatory recovery with analysis-by-synthesis.
J Acoust Soc Am. 1999 Aug;106(2):1090-105. doi: 10.1121/1.427117.
8
Vowel category dependence of the relationship between palate height, tongue height, and oral area.
J Speech Lang Hear Res. 2003 Jun;46(3):738-53. doi: 10.1044/1092-4388(2003/059).
9
A parametric model of the vocal tract area function for vowel and consonant simulation.
J Acoust Soc Am. 2005 May;117(5):3231-54. doi: 10.1121/1.1869752.
10
Analysis of vocal tract shape and dimensions using magnetic resonance imaging: vowels.
J Acoust Soc Am. 1991 Aug;90(2 Pt 1):799-828. doi: 10.1121/1.401949.

引用本文的文献

1
Overtone focusing in biphonic tuvan throat singing.
Elife. 2020 Feb 17;9:e50476. doi: 10.7554/eLife.50476.
2
Phrase-level speech simulation with an airway modulation model of speech production.
Comput Speech Lang. 2013 Jun 1;27(4):989-1010. doi: 10.1016/j.csl.2012.10.005.
3
Relation of vocal tract shape, formant transitions, and stop consonant identification.
J Speech Lang Hear Res. 2010 Dec;53(6):1514-28. doi: 10.1044/1092-4388(2010/09-0127). Epub 2010 Jul 19.
4
Acoustic-articulatory mapping in vowels by locally weighted regression.
J Acoust Soc Am. 2009 Oct;126(4):2011-32. doi: 10.1121/1.3184581.
5
Vowel and consonant contributions to vocal tract shape.
J Acoust Soc Am. 2009 Aug;126(2):825-36. doi: 10.1121/1.3158816.
6
Identification of synthetic vowels based on selected vocal tract area functions.
J Acoust Soc Am. 2009 Jan;125(1):19-22. doi: 10.1121/1.3033740.

本文引用的文献

1
Synergistic modes of vocal tract articulation for American English vowels.
J Acoust Soc Am. 2005 Dec;118(6):3834-59. doi: 10.1121/1.2118367.
2
A parametric model of the vocal tract area function for vowel and consonant simulation.
J Acoust Soc Am. 2005 May;117(5):3231-54. doi: 10.1121/1.1869752.
3
Analysis of the three-dimensional tongue shape using a three-index factor analysis model.
J Acoust Soc Am. 2003 Jan;113(1):478-86. doi: 10.1121/1.1520538.
4
Acoustic impedance of an artificially lengthened and constricted vocal tract.
J Voice. 2000 Dec;14(4):455-69. doi: 10.1016/s0892-1997(00)80003-x.
5
On the lingual organization of the German vowel system.
J Acoust Soc Am. 1999 Aug;106(2):1020-32. doi: 10.1121/1.428053.
6
Vocal tract area functions from magnetic resonance imaging.
J Acoust Soc Am. 1996 Jul;100(1):537-54. doi: 10.1121/1.415960.
7
Two cross-linguistic factors underlying tongue shapes for vowels.
J Acoust Soc Am. 1996 Jun;99(6):3707-17. doi: 10.1121/1.414968.
8
Individual differences in vowel production.
J Acoust Soc Am. 1993 Aug;94(2 Pt 1):701-14. doi: 10.1121/1.406887.
9
Coordination and coarticulation in speech production.
Lang Speech. 1993 Apr-Sep;36 ( Pt 2-3):171-95. doi: 10.1177/002383099303600304.
10
From EMG to formant patterns of vowels: the implication of vowel spaces.
Phonetica. 1994;51(1-3):17-29. doi: 10.1159/000261955.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验