Suppr超能文献

基于言语产生气道调制模型的短语级言语模拟。

Phrase-level speech simulation with an airway modulation model of speech production.

作者信息

Story Brad H

机构信息

Speech Acoustics Laboratory, Dept. of Speech, Language, and Hearing Sciences, University of Arizona, 1131 E. 2nd St., P.O. Box 210071, Tucson, AZ, 85721, United States.

出版信息

Comput Speech Lang. 2013 Jun 1;27(4):989-1010. doi: 10.1016/j.csl.2012.10.005.

Abstract

Artificial talkers and speech synthesis systems have long been used as a means of understanding both speech production and speech perception. The development of an airway modulation model is described that simulates the time-varying changes of the glottis and vocal tract, as well as acoustic wave propagation, during speech production. The result is a type of artificial talker that can be used to study various aspects of how sound is generated by humans and how that sound is perceived by a listener. The primary components of the model are introduced and simulation of words and phrases are demonstrated.

摘要

长期以来,人工发声器和语音合成系统一直被用作理解语音产生和语音感知的一种手段。本文描述了一种气道调制模型的开发,该模型模拟了语音产生过程中声门和声道的时变变化以及声波传播。其结果是一种可用于研究声音如何由人类产生以及听众如何感知该声音等各个方面的人工发声器。文中介绍了该模型的主要组成部分,并展示了单词和短语的模拟。

相似文献

1
Phrase-level speech simulation with an airway modulation model of speech production.
Comput Speech Lang. 2013 Jun 1;27(4):989-1010. doi: 10.1016/j.csl.2012.10.005.
2
Structure, Movement, Sound, and Perception.
Perspect Speech Sci Orofac Disord. 2014 Aug;24:7-20. doi: 10.1044/ssod24.1.7.
4
Talker-to-listener distance effects on speech production and perception.
J Acoust Soc Am. 2009 Oct;126(4):2052-60. doi: 10.1121/1.3205400.
5
On the perception of similarity among talkers.
J Acoust Soc Am. 2007 Dec;122(6):3688-96. doi: 10.1121/1.2799903.
6
Vocal effort with changing talker-to-listener distance in different acoustic environments.
J Acoust Soc Am. 2011 Apr;129(4):1981-90. doi: 10.1121/1.3552881.
8
Analysis of the aerodynamic sound of speech through static vocal tract models of various glottal shapes.
J Biomech. 2020 Jan 23;99:109484. doi: 10.1016/j.jbiomech.2019.109484. Epub 2019 Nov 5.
9
Development of an Acoustic Simulation Method during Phonation of the Japanese Vowel /a/ by the Boundary Element Method.
J Voice. 2021 Jul;35(4):530-544. doi: 10.1016/j.jvoice.2019.11.022. Epub 2019 Dec 27.
10
Exploring the anatomical encoding of voice with a mathematical model of the vocal system.
Neuroimage. 2016 Nov 1;141:31-39. doi: 10.1016/j.neuroimage.2016.07.033. Epub 2016 Jul 17.

引用本文的文献

3
Motor representations underlie the reading of unfamiliar letter combinations.
Sci Rep. 2020 Mar 2;10(1):3828. doi: 10.1038/s41598-020-59199-6.
4
Overtone focusing in biphonic tuvan throat singing.
Elife. 2020 Feb 17;9:e50476. doi: 10.7554/eLife.50476.
5
A modular architecture for articulatory synthesis from gestural specification.
J Acoust Soc Am. 2019 Dec;146(6):4458. doi: 10.1121/1.5139413.
6
A model of speech production based on the acoustic relativity of the vocal tract.
J Acoust Soc Am. 2019 Oct;146(4):2522. doi: 10.1121/1.5127756.
7
An age-dependent vocal tract model for males and females based on anatomic measurements.
J Acoust Soc Am. 2018 May;143(5):3079. doi: 10.1121/1.5038264.
8
An acoustically-driven vocal tract model for stop consonant production.
Speech Commun. 2017 Mar;87:1-17. doi: 10.1016/j.specom.2016.12.001. Epub 2016 Dec 9.
9
Real-Time Control of an Articulatory-Based Speech Synthesizer for Brain Computer Interfaces.
PLoS Comput Biol. 2016 Nov 23;12(11):e1005119. doi: 10.1371/journal.pcbi.1005119. eCollection 2016 Nov.
10
Formant measurement in children's speech based on spectral filtering.
Speech Commun. 2015;76:93-111. doi: 10.1016/j.specom.2015.11.001.

本文引用的文献

1
The relation of nasality and nasalance to nasal port area based on a computational model.
Cleft Palate Craniofac J. 2012 Nov;49(6):741-9. doi: 10.1597/11-131. Epub 2011 Oct 4.
2
Relation of structural and vibratory kinematics of the vocal folds to two acoustic measures of breathy voice based on computational modeling.
J Speech Lang Hear Res. 2011 Oct;54(5):1267-83. doi: 10.1044/1092-4388(2011/10-0195). Epub 2011 Apr 15.
3
Relation of vocal tract shape, formant transitions, and stop consonant identification.
J Speech Lang Hear Res. 2010 Dec;53(6):1514-28. doi: 10.1044/1092-4388(2010/09-0127). Epub 2010 Jul 19.
4
Identification of synthetic vowels based on a time-varying model of the vocal tract area function.
J Acoust Soc Am. 2010 Apr;127(4):EL146-52. doi: 10.1121/1.3313921.
5
Vowel and consonant contributions to vocal tract shape.
J Acoust Soc Am. 2009 Aug;126(2):825-36. doi: 10.1121/1.3158816.
6
Vocal tract modes based on multiple area function sets from one speaker.
J Acoust Soc Am. 2009 Apr;125(4):EL141-7. doi: 10.1121/1.3082263.
7
Identification of synthetic vowels based on selected vocal tract area functions.
J Acoust Soc Am. 2009 Jan;125(1):19-22. doi: 10.1121/1.3033740.
8
Simulation and analysis of nasalized vowels based on magnetic resonance imaging data.
J Acoust Soc Am. 2007 Jun;121(6):3858-73. doi: 10.1121/1.2722220.
9
Time dependence of vocal tract modes during production of vowels and vowel sequences.
J Acoust Soc Am. 2007 Jun;121(6):3770-89. doi: 10.1121/1.2730621.
10
Synergistic modes of vocal tract articulation for American English vowels.
J Acoust Soc Am. 2005 Dec;118(6):3834-59. doi: 10.1121/1.2118367.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验