Snijders Chris J, Hermans Paul F G, Niesing Ruud, Jan Kleinrensink Gert, Pool-Goudzwaard Annelies
Department of Biomedical Physics and Technology, Erasmus MC, University Medical Center Rotterdam, The Netherlands.
Man Ther. 2008 Aug;13(4):325-33. doi: 10.1016/j.math.2007.03.001. Epub 2007 Jun 5.
The study consisted of biomechanical modelling and in vitro experiments. The objective of the study was to find a mechanical cause of acute low back pain (LBP) in everyday situations. The precise mechanism producing LBP is still under discussion. Most biomechanical studies link the concepts of stooped postures and buckling instability of the spine under high compressive load. No biomechanical model addresses situations with small or neglectable compressive spinal load. The proposed conceptual model describes strain on the iliolumbar ligaments (ILs) when slouching from standing upright. Delayed or absent recruitment of back muscles that protect against hyperkyphosis of the lumbar spine is a conditional factor. Erector spinae and multifidus muscle forces are included, representing a bifurcation in back muscle force: one part acting on the iliac bones and one part acting on the sacrum. The multifidus muscle action on the sacrum may produce nutation which can be counteracted by pelvic floor muscles, which would link back problems and pelvic floor problems. The effect of simulated muscle tension on the ILs and the L5-S1 intervertebral disc angle was measured using embalmed specimens. Forces were applied to simulate erector spinae and sacral part of multifidus tension, bilateral up to 100 N each. Strain gauge sensors registered elongation of the ILs. Explorative biomechanical model calculations show that dynamic slouching, driven by upper body weight and (as an example) rectus abdominis muscle force may produce failure load of the spinal column and the ILs. The quasi-static test on embalmed specimens showed a significant increase of IL elongation with simulated rectus abdominis muscle force. Adding erector spinae or multifidus muscle tension eased the ILs. Sudden slouching of the upright trunk may create failure risk for the spine and ILs. This loading mode may be prevented by controlling loss of lumbar lordosis with erector spinae and multifidus muscle force.
该研究包括生物力学建模和体外实验。本研究的目的是找出日常情况下急性下背痛(LBP)的机械原因。产生LBP的确切机制仍在讨论中。大多数生物力学研究将弯腰姿势的概念与脊柱在高压缩负荷下的屈曲不稳定性联系起来。没有生物力学模型涉及脊柱压缩负荷小或可忽略不计的情况。所提出的概念模型描述了从直立姿势弯腰时髂腰韧带(ILs)上的应变。保护腰椎防止过度后凸的背部肌肉募集延迟或缺失是一个条件因素。竖脊肌和多裂肌的力量被纳入其中,这代表了背部肌肉力量的一个分支:一部分作用于髂骨,一部分作用于骶骨。多裂肌对骶骨的作用可能会产生骶骨前倾,这可以由盆底肌肉抵消,这将把背部问题和盆底问题联系起来。使用防腐标本测量模拟肌肉张力对ILs和L5 - S1椎间盘角度的影响。施加力以模拟竖脊肌和多裂肌骶骨部分的张力,双侧各高达100 N。应变片传感器记录ILs的伸长情况。探索性生物力学模型计算表明,由上身重量和(例如)腹直肌力量驱动的动态弯腰可能会产生脊柱和ILs的破坏负荷。对防腐标本的准静态测试表明,随着模拟腹直肌力量的增加,IL伸长显著增加。增加竖脊肌或多裂肌的张力可减轻ILs的负担。直立躯干的突然弯腰可能会给脊柱和ILs带来破坏风险。这种加载模式可以通过用竖脊肌和多裂肌力量控制腰椎前凸的丧失来预防。